Skip to main content

Production of Reactive Oxygen Species and Its Implication in Human Diseases

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

Reactive oxygen species (ROS) are chemical molecules with one unpaired electron and mostly derived from molecular oxygen. It is produced in all the mammalian system by various exogenous and endogenous sources. Mitochondria are major sources of ROS production and they are produced as a respiratory by-product. The main sites of superoxide radical production in the respiratory chain are complexes III and I; however, other mitochondrial enzymes are also involved in the production of ROS. Because of the presence of one unpaired electron, ROS is highly reactive, and it may cause oxidative damage to the biomolecules and cell organelles and hence may affect the cellular physiology and their survivability.

A variety of diseases have been associated with excessive ROS production leading to mitochondrial damage, apoptosis, and necrosis. The interrelationship between ROS and mitochondria suggests shared pathogenic mechanisms in mitochondrial and ROS-related diseases. Some common diseases, known to be caused by ROS and mitochondrial damages, are several mitochondrial diseases, neurodegenerative diseases, and aging. In the present chapter, we have summarized the molecular mechanisms of ROS production, its damaging effect on cellular physiology, as well as the existing evidence of mitochondrial ROS involvement in human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerschman R (1959) Oxygen effects in biological systems. Sym Spec Lect XXI Int Congr Physiol Soc 21:222–226

    Google Scholar 

  2. Zhang X, Rosenstein BS, Wang Y et al (1997) Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage. Free Radic Biol Med 23:980–985

    Article  CAS  PubMed  Google Scholar 

  3. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22S

    Article  CAS  PubMed  Google Scholar 

  4. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  5. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91:10771–10778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York, Section 16.2, Electron transport and oxidative phosphorylation

    Google Scholar 

  7. Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82:563–567

    Article  CAS  PubMed  Google Scholar 

  8. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Li X, Fang P, Mai J et al (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:1–19

    Article  CAS  Google Scholar 

  10. Hirst J, King M, Pryde K (2008) The production of reactive oxygen species by complex I. Biochem Soc Trans 36:976–980

    Article  CAS  PubMed  Google Scholar 

  11. Cino M, Del Maestro RF (1989) Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following post decapitative ischemia. Arch Biochem Biophys 269:623–638

    Article  CAS  PubMed  Google Scholar 

  12. Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29:89–95

    Article  CAS  PubMed  Google Scholar 

  13. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  PubMed  Google Scholar 

  14. Korshunov SS, Korkina OV, Ruuge EK et al (1998) Fatty acids as natural uncouplers preventing generation of O2d− and H2O2 by mitochondria in the resting state. FEBS Lett 435:215–218

    Article  CAS  PubMed  Google Scholar 

  15. Kwong LK, Sohal RS (1998) Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys 350:118–126

    Article  CAS  PubMed  Google Scholar 

  16. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 19:421–427

    Google Scholar 

  17. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787

    Article  CAS  PubMed  Google Scholar 

  18. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  CAS  PubMed  Google Scholar 

  19. Hinkle P, Butow RA, Racker E et al (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J Biol Chem 242:5169–5173

    CAS  PubMed  Google Scholar 

  20. Quinlan C, Orr A, Perevoshchikova I (2012) Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 287:27255–27264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cortopassi G, Wang E (1995) Modelling the effects of age-related mtDNA mutation accumulation: complex I deficiency, superoxide and cell death. Biochim Biophys Acta 1271:171–176

    Article  PubMed  Google Scholar 

  22. McLennan HR, Degli Esposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Yu L, Yu CA (1998) Generation of superoxide anion by succinate cytochrome c reductase from bovine heart mitochondria. J Biol Chem 273:33972–33976

    Article  CAS  PubMed  Google Scholar 

  24. Chen Q, Vazquez E, Moghaddas S et al (2003) The reverse reaction, with electrons supplied from the reduced ubiquinone pool. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  25. Loschen G, Azzi A, Flohe L (1973) Mitochondrial H2O2 formation: relationship with energy conservation. FEBS Lett 33:84–87

    Article  CAS  PubMed  Google Scholar 

  26. Nohl H, Gille L, Scho¨nheit K et al (1996) Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen. Free Radic Biol Med 20:207–213

    Article  CAS  PubMed  Google Scholar 

  27. Turrens JF (2003) Mitochondrial production of reactive oxygen species. J Physiol 2:335–344

    Article  Google Scholar 

  28. Bhandary B, Marahatta A, Kim HR et al (2003) An involvement of oxidative stress in endoplasmic reticulum stress and its associated disease. Int J Mol Sci 14:434–456

    Article  Google Scholar 

  29. Santos CX, Tanaka LY, Wosniak J et al (2009) Mechanisms and implication of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductase, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  PubMed  Google Scholar 

  30. Tu BP, Weismann JS (2002) The FAD and O(2) dependent reaction cycle of Erol-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10:983–994

    Article  CAS  PubMed  Google Scholar 

  31. Higa A, Chevet E (2012) Redox signalling loops in the unfolded protein response. Cell Signal 24:1548–1555

    Article  CAS  PubMed  Google Scholar 

  32. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double edged sword? Antioxid Redox Signal 9:2277–2293

    Article  CAS  PubMed  Google Scholar 

  33. Angermüller S, Bruder G, Völkl A et al (1987) Localization of xanthine oxidase in crystalline cores of peroxisomes. A cytochemical and biochemical study. Eur J Cell Biol 45:137–144

    PubMed  Google Scholar 

  34. Fransen M, Nordgren M, Wang B et al (2012) Role of peroxisomes in ROS/RNS- metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373

    Article  CAS  PubMed  Google Scholar 

  35. Zeviani M, Antozzi C (1997) Mitochondrial disorders. Mol Hum Reprod 3:133–148

    Article  CAS  PubMed  Google Scholar 

  36. Gutierrez J, Ballinger S, Darley-Usmar V et al (2006) Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res 99:924–932

    Article  CAS  PubMed  Google Scholar 

  37. Ott M, Gogvadze V, Orrenius S et al (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  38. Fulda S, Gorman A, Hori O et al (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010:214074

    PubMed Central  PubMed  Google Scholar 

  39. Datta K, Sinha S, Chattopadhyay P (2000) Reactive oxygen species in health and disease. Natl Med J India 13:304–310

    CAS  PubMed  Google Scholar 

  40. Circu M, Yee A (2010) Reactive oxygen species, cellular redox systems and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Han-Ming S, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox dependent execution. FASEB J 20:1589–1598

    Article  Google Scholar 

  42. Liu Y, Kulesz-Martin M (2001) p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis 22:851–860

    Article  CAS  PubMed  Google Scholar 

  43. Nele Vanlangenakker N, Berghe T, Krysko D et al (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8:207–220

    Article  PubMed  Google Scholar 

  44. Zong XW, Thompson C (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    Article  CAS  PubMed  Google Scholar 

  45. Eskelinen EL (2008) New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol 266:207–247

    Article  CAS  PubMed  Google Scholar 

  46. Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248

    Article  CAS  PubMed  Google Scholar 

  47. Ogata M, Hino SI, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Scherz-Shouval R, Shvets E, Fass E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kirkinezosa IG, Moraesa CT (2001) Reactive oxygen species and mitochondrial diseases. Cell Dev Biol 12:449–457

    Article  Google Scholar 

  50. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94:514–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Tanaka M, Kovalenko SA, Gong JS et al (1996) Accumulation of deletions and point mutations in mitochondrial genome in degenerative diseases. Ann N Y Acad Sci 786:102–111

    Article  CAS  PubMed  Google Scholar 

  52. Parker WD, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  53. Mutisya EM, Bowling AC, Beal MF (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem 63:2179–2184

    Article  CAS  PubMed  Google Scholar 

  54. Borthwick GM, Johnson MA, Ince PG et al (1999) Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 46:787–790

    Article  CAS  PubMed  Google Scholar 

  55. Xu GP, Dave KR, Moraes CT et al (2001) Dysfunctional mitochondrial respiration in the wobbler mouse brain. Neurosci Lett 300:141–144

    Article  CAS  PubMed  Google Scholar 

  56. Brookes PS, Land JM, Clark JB et al (1998) Peroxynitrite and brain mitochondria: evidence for increased proton leak. J Neurochem 70:2195–2202

    Article  CAS  PubMed  Google Scholar 

  57. Munscher C, Rieger T, Muller-Hocker J et al (1993) The point mutation of mitochondrial DNA characteristic for MERRF disease is found also in healthy people of different ages. FEBS Lett 317:27–30

    Article  CAS  PubMed  Google Scholar 

  58. Zhang C, Linnane AW, Nagley P (1993) Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans. Biochem Biophys Res Commun 195:1104–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Author wishes to acknowledge Nancy Taneja, Arshpreet Kalsi, and Alok Tandon for their contribution in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Mani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mani, S. (2015). Production of Reactive Oxygen Species and Its Implication in Human Diseases. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_1

Download citation

Publish with us

Policies and ethics