Advertisement

Oxidative Stress in Pathogenesis

  • Mohinder Bansal
  • Naveen Kaushal
Chapter

Abstract

Oxidative stress has been well implicated in the pathogenesis of various human diseases. Presently molecular mechanistic considerations of the oxidative stress pathogenesis in most vital organ systems, e.g., nervous system, cardiovascular system, male/female reproductive system, and autoimmune disease-related systems, will be discussed. In the end each pathology, therapeutic considerations of antioxidants will be reviewed.

Keywords

Oxidative Stress Rheumatoid Arthritis Rheumatoid Arthritis Patient Endoplasmic Reticulum Stress NADPH Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Neurodegeneration Diseases

  1. Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23:5088–5095PubMedGoogle Scholar
  2. Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24:565–575PubMedGoogle Scholar
  3. Anderson I, Adinolfi C, Doctrow S, Huffman K, Joy KA, Malfrov B, Soden P, Rupniak HT, Bames JC (2001) Oxidative signalling and inflammatory pathways in Alzheimer’s disease. Biochem Soc Symp 67:141–149PubMedGoogle Scholar
  4. Benabid AL, Waliace B, Mitrofanis J, Xia C, Piallat B, Fraix V, Batir A, Krack P, Poliak P, Berger F (2005) Therapeutic electrical stimulation of the central nervous system. C R Biol 328:177–186PubMedGoogle Scholar
  5. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hershoson JS, Betts J, Klopstock T, Taylor RW, Turnbull DMJ (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517PubMedGoogle Scholar
  6. Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49PubMedGoogle Scholar
  7. Chinta SJ, Mallajosyula JK, Rane A, Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in the dopaminergic neurons and results in increased mitophagy in vitro. Neurosci Lett 486:235–239PubMedPubMedCentralGoogle Scholar
  8. Conte V, Uryu K, Fujimoto S, Yao Y, Rokach J, Longhi L, Trojanowski JQ, Lee VM, McIntosh TK, Pratico D (2004) Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J Neurochem 90:758–764PubMedGoogle Scholar
  9. Dal-Cim T, Motz S, Egea J, Parada E, Romero A, Budni J, Martin de Saavedra MD, Barrio LD, Tasca CL, Lopez MG (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing Heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. Neurochem Int 61:397–404PubMedGoogle Scholar
  10. Dalfo EP, Portero-Otin MMP, Ayala VP, Martinez A, Pamplona M, Ferrer IM (2005) Evidence of oxidative stress in the neocortex in incidental lewy body disease. J Neuropath Exptl Neurol 64:816–830Google Scholar
  11. Darios F, Corti O, Lucking CB, Hampe C, Muriel MP, Abbas N, Gu WJ, Hirsch EC, Rooney T, Ruberg M, Brice A (2003) Parkin prevents mitochondrial swelling and cytochrome release in mitochondria-dependent cell death. Hum Mol Genet 12:517–526PubMedGoogle Scholar
  12. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516PubMedGoogle Scholar
  13. Du H, Yan SS (2010) Mitochondrial permeability transition pore in Alzheimer’s disease cyclophilin D and amyloid. Biochim Biophys Acta 1802:198–204PubMedPubMedCentralGoogle Scholar
  14. Dumont M, Lin MT, Beal MF (2010) Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer’s disease. J Alzheim Dis 20:5633–5643Google Scholar
  15. Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A (2009) Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 48:4220–4230PubMedPubMedCentralGoogle Scholar
  16. Ermak G, Davies KJ (2002) Calcium and oxidative stress from cell signaling to cell death. Mol Immunol 38:713–721PubMedGoogle Scholar
  17. Ferrari CKB (2000) Free radicals, lipid peroxidation and antioxidants in apoptosis: implication in cancer, cardiovascular and oxidants in apoptosis: implications in cancer, cardiovascular and neurological diseases. Biologia 55:581–590Google Scholar
  18. Fitzgerald JC, Camprubi MD, Dunn L, Wu HC, Ip NY, Kruger R, Martins LM, Wood NW, Plun-Favreau H (2012) Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function. Cell Death Differ 19:257–266PubMedPubMedCentralGoogle Scholar
  19. Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxidative Med Cell Longev, PMID 22685618Google Scholar
  20. Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downwara J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–639PubMedPubMedCentralGoogle Scholar
  21. Gandhi S, Vaarmann A, Yao Z, Duchen MR, Wood NW, Abramov AY (2012) Dopamine induced neurodegeneration in a PINK1 model of Parkinson’s disease. Plos ONE 7:e37565Google Scholar
  22. Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23:6181–6187PubMedGoogle Scholar
  23. Gerard C, Chehal H, Hugel RP (1994) Complexes of iron (III) with ligands of biological interest dopamine and 8-hydroxyquinine-5-sulfonic acid. Polyhedron 13:591–597Google Scholar
  24. Hemandez F, Avila J (2007) Tauopathies. Cell Mol Life Sci 64:2219–2233Google Scholar
  25. Hirsch EC, Jenner P, Przedborski S (2013) Pathogenesis of Parkinson’s disease. Mov Disord 28:24–30PubMedGoogle Scholar
  26. Kaminsky YG, Kosenko EA (2008) Effects of amyloid-beta peptides on hydrogen peroxide-metabolizing enzymes in rat brain in vivo. Free Rad Res 42:564–573Google Scholar
  27. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364PubMedGoogle Scholar
  28. Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from αsynuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11:2395–2407PubMedGoogle Scholar
  29. Lothiarius J, O’Malley KL (2000) The Parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation: a novel mechanism of toxicity. J Bio Chem 275:38581–38588Google Scholar
  30. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family-an evolutionary overview. FEBS J 275:3859–3970Google Scholar
  31. Mattson MP (2003) Will caloric restriction and folate protect against AD and PD? Neurology 60:690–695PubMedGoogle Scholar
  32. Muftuoglu M, Elibol B, Dalmizrak O, Ercan A, Kulaksiz G, Ogus H, Dalkara T, Ozer N (2004) Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 19:544–548PubMedGoogle Scholar
  33. Muller T (2011) Motor complications, levodopa metabolism and progression of Parkinson’s disease. Expert Opin Drug Metab Toxicol 7:847–855PubMedGoogle Scholar
  34. Obata T, Kubota S, Yamanaka Y (2001) Allopurinol suppresses para-nonylphenol and 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in rat striatum. Neurosci Lett 306:9–12PubMedGoogle Scholar
  35. Opazo C, Huang X, Chemy R, Chemy R (2002) Metalloenzyme-like activity of Alzheimer’s disease β-amyloid. Cu-dependent catalytic conversion of dopamine cholesterol, and biological reducing agents to neurotoxic H2O2. J Biol Chem 277:40302–40308PubMedGoogle Scholar
  36. Park L, Zhou P, Pitstick R, Carpone C, Anrather J, Norris EH, Younkin L, Youakin S, Carlson G, McEwen BS, Ladecola C (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci U S A 105:1347–1352PubMedPubMedCentralGoogle Scholar
  37. Peterson LJ, Flood PM (2012) Oxidative stress and microglial cells in Parkinson’s disease. Mediators Inflamm 2012, 401264PubMedPubMedCentralGoogle Scholar
  38. Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26:7212–7221PubMedGoogle Scholar
  39. Schroeter H, Spencer JP, Rice-Evans C, Williams RJ (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-jun N-terminal kinase (JNK), c-jun and caspase-3. Biochem J 358:547–557PubMedPubMedCentralGoogle Scholar
  40. Shapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109, 68Google Scholar
  41. Smith DS, Tsai LH (2002) Cdk5 behind the wheel: a role in trafficking and transport? Trends Cell Biol 12:28–36PubMedGoogle Scholar
  42. Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186:158–172PubMedGoogle Scholar
  43. Sun KH, DePablo Y, Vincent F, Shah K (2008) Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 107:265–278PubMedGoogle Scholar
  44. Sung S, Yao Y, Uryu K, Yang H, Lee VM, Trajanowaki JQ, Pratico D, Faseb J (2004) Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J 18:323–325PubMedGoogle Scholar
  45. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2011) The origin of oxidant stress in Parkinson’s disease and therapeutic strategies. Antioxid Redox Signal 14:1289–1301PubMedPubMedCentralGoogle Scholar
  46. Tiraboschi P, Hansen LA, Thal IJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989PubMedGoogle Scholar
  47. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74PubMedPubMedCentralGoogle Scholar
  48. Vaarmann A, Gandhi S, Abramov AY (2010) Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 285:25018–25023PubMedPubMedCentralGoogle Scholar
  49. van Muiswinkel FL, Kuiperij HB (2005) The Nrf2-ARE signaling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neuro Disord 4:267–281Google Scholar
  50. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12PubMedPubMedCentralGoogle Scholar
  51. Weber CA, Ernst ME (2006) Antioxidants supplements and Parkinson’s disease. Ann Pharmacother 40:935–938PubMedGoogle Scholar
  52. Wilkinson B, Koenigsknecht-Taboo C, Grommes C, Lee CYD, Landreth (2006) Fibrillar β-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia. J Biol Chem 281:20842–20850PubMedGoogle Scholar
  53. Wu AD, Fregni F, Simon DK, Deblieck C, Pascual-Leone A (2008) Noninvasive brain stimulation for Parkinson’s disease and dystonia. Neurotherapeutics 5:345–361PubMedPubMedCentralGoogle Scholar
  54. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein reversal by tachykinin neuropeptide. Science 250:279–282PubMedGoogle Scholar

Cardiovascular Diseases

  1. AI Ahmad A et al (2009) Maintaining blood-brain barrier integrity pericytes perform better astrocytes during prolonged oxygen deprivation. J Cell Physiol 218:612–622Google Scholar
  2. AI Ahmad A, Gassmann M, Ogunshola OO (2012) Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc Res 84:222–225Google Scholar
  3. Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4:461–470PubMedGoogle Scholar
  4. Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC (2007) Neuron-specific inactivation of the hypoxia inducible factor 1α increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 23:6320–6332Google Scholar
  5. Berliner JA, Navab M, Fogelman AM, Frank JS, Dermer LL, Edwards PA, Watson AD, Lusis AJ (1995) Atherosclerosis: basic mechanisms, oxidation, inflammation and genetics. Circulation 91:2488–2496PubMedGoogle Scholar
  6. Bevers LM, Braam B, Post JA, Zonneveld AJ, rbelink TJ, Koomans HA, Verhaar MC, Joles JA (2006) Tetrahydrobiopterin but not L-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension 47:87–94PubMedGoogle Scholar
  7. Brandes RP, Weissmann N, Schroder K (2010) NADPH oxidases in cardiovascular diseases. Free Radic Biol Med 49:687–706PubMedGoogle Scholar
  8. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophages. Ann Rev Biochem 52:223–261PubMedGoogle Scholar
  9. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshorte E (1998) Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490PubMedGoogle Scholar
  10. Carr AC, Frei B (2001) The nitric oxide congener nitrite inhibits myeloperoxidase/ H2O2/Cl-mediated modification of low density lipoprotein. J Biol Chem 276:1822–1828PubMedGoogle Scholar
  11. Castelli WP (1986) The triglyceride issue: a view from Framingham. Am Heart J 112:432–437PubMedGoogle Scholar
  12. Chandel NS, Maitape E, Goldwasser E, Mathieu CE, Simon MC, Schumacbu PT (1998) Mitochondrial reactive oxygen species trigger hypoxia –induced transcription. Proc Natl Acad Sci U S A 95:11715–11720PubMedPubMedCentralGoogle Scholar
  13. Duffy D, Holmes DN, Roe MT, Peterson ED (2012) The impact of high-density lipoprotein cholesterol levels on long-term outcomes after non-ST-elevation myocardial infarction. Am Heart J 163:705–713PubMedGoogle Scholar
  14. Endemann G, Pronzcuk A, Freidman G, Lindsey S, Alderson L, Hayes KC (1987) Monocyte adherence to endothelial cells in vitro is increased by β-VLDL. Am J Pathol 126:1–6PubMedPubMedCentralGoogle Scholar
  15. Engler MM, Engler MB, Malloy MJ, Chiu EY, Schlother MC, Paul SM, Shiehinger M, Lin KY (2003) Antioxidant vitamin C and E improve endothelial function in children with hyperlipidemia. Endothelial Assessment of Risk from lipid in Youth (EARLY) trial. Circulation 108:1059–1063PubMedGoogle Scholar
  16. Garner B, Cooke JP, Morrow JD, Ridker PM, Rifai N, Miller L, Witzhum JL, Mietus-Snycler (1998) Oxidation of high density lipoproteins. II, evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem 273:6088–6095PubMedGoogle Scholar
  17. Goldstein JL, Ho YK, Brown MS, Innerarity TL, Mahley RW (1980) Cholesteryl ester accumulation in macrophages resulting from receptor mediated uptake and degradation hypercholesterolemic canine β-VLDL. J Biol Chem 225:1839–1848Google Scholar
  18. Guo S, Miyake M, Liu KJ, Shi H (2009) Specific inhibition of hypoxia inducible factor exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment. J Neurochem 5:1309–1321Google Scholar
  19. Hausenloy DJ, Yellon DM (2008) Time to take myocardial reperfusion injury seriously. N Eng J Med 359:518–520Google Scholar
  20. Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment and capillary density in the injured myocardium. Circ Res 106:1753–1762PubMedPubMedCentralGoogle Scholar
  21. Javadov S, Karmazyn M (2007) Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20:1–22PubMedGoogle Scholar
  22. Jialal I, Devaraj S (1996) Low density lipoprotein oxidation, antioxidants and atherosclerosis: a clinical biochemistry perspectives. Clin Chem 42:498–506PubMedGoogle Scholar
  23. Kaur HD, Bansal MP (2009) Studies on associated enzymes under experimental hypercholesterolemia: possible modulation on selenium supplementation. Lipids Health Dis 8:1–16Google Scholar
  24. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. Plos Biol 8:e1000479PubMedPubMedCentralGoogle Scholar
  25. Klimov AN, Kozheynikoya KA, Kuzmin AA, Kuzetrov AS, Belora EV (2001) On the ability of high density lipoproteins to remove phospholipid peroxidation products from erythrocyte membranes. Biochemistry (Mosc) 66:300–304Google Scholar
  26. Kuhn H, Romisch J, Belkner J (2005) The role of lipoxygenase-isoforms in atherogenesis. Mol Nutr Food Res 49:1014–1029PubMedGoogle Scholar
  27. Kunitake ST, Jarvis MR, Hamilton RL, Kane JP (1992) Binding of transition metals by apolipoprotein A-1-containing plasma lipoproteins: inhibition of oxidation of low density lipoproteins. Proc Natl Acad Sci U S A 89:6993–6997PubMedPubMedCentralGoogle Scholar
  28. Lochhead JJ, Mccaffrey G, Quigley CE, Finch J, DeMarco KM, Nametz N, Davis TP (2010) Oxidative stress increases blood-brain barrier permeability and induces alterations in occluding during hypoxia-reoxygenation. J Cereb Blood Flow Metab 30:1625–1636PubMedPubMedCentralGoogle Scholar
  29. Lonn EM, Yusuf S, Dzavik V, Doris C, Yi Q, Smith S, Moore Cox A, Bosch J, Riley W, Teo K (2001) Effects of ramipril and vitamin E on atherosclerosis: the Study to Evaluate Carotid Ultrasound changes in patients treated with Ramipril and vitamin E (SECURE). Circulation 103:919–925PubMedGoogle Scholar
  30. Malhotra R, Lin Z, Vinconz C, Brosius FC 3rd (2001) Hypoxia induces apoptosis via two independent pathways in Jurkat cells: differential regulation by glucose. Am J Physiol Cell Physiol 281:C1596–C1603PubMedGoogle Scholar
  31. Malle E, Waeg G, Schreiber R, Grone EF, Sattler W, Grone HJ (2000) Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins. Eur J Biochem 267:4495–4503PubMedGoogle Scholar
  32. Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780:1325–1336PubMedGoogle Scholar
  33. Murthy KG, Szabo C, Salzman AI (2004) Cytokines stimulate expression of inducible nitric oxide synthase in DLD-1 human adenocarcinoma cells by activating poly(A) polymerase. Inflamm Res 53:604–608PubMedGoogle Scholar
  34. Neri M, Fineschi V, Di Paolo M, Pomara C, Riezzo I, Tunilazzi E, Cerretani D (2013) Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr Vasc Pharmacol, PMID 23716180Google Scholar
  35. Nicholls SJ, Dustina GJ, Cutri B, Bao S, Deummond GR, Rye KA, Barter PJ (2005) Reconstituted high-density lipoprotein inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111:1543–1550PubMedGoogle Scholar
  36. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551PubMedPubMedCentralGoogle Scholar
  37. Ozkul A, Akyol AL, Yenisey C, Arpaci E, Kyloglu N, Tataroglu C (2007) Oxidative stress in acute ischemic stroke. J Clin Neurosci 14:1062–1066PubMedGoogle Scholar
  38. Parathasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D (1986) Macrophage oxidation of low density lipoprotein generates a modified form recognized by scavenger receptor. Atherosclerosis 6:505–510Google Scholar
  39. Prasad K, Kalra J (1992) Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J 125:958–961Google Scholar
  40. Precourt LP, Amre D, Denis MC, Lavoie JC, Delvin E, Seidman E, Levy E (2011) The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosis 214:20–36PubMedGoogle Scholar
  41. Ross R (1991) The pathogenesis of atherosclerosis. In: Braunward E (ed) Heart disease. W.B. Saunders Co., Philadelphia, pp 1135–1152Google Scholar
  42. Sandin A, Dagnell M, Gonon A, Pernow J, Stangl V, Aspenstrom P, Kappert K, Ostman A (2011) Hypoxia followed by re-oxygenation induces oxidation of tyrosine phosphatases. Cell Signal 23:820–826PubMedGoogle Scholar
  43. Shi H (2009) Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr Med Chem 16:4593–4600PubMedPubMedCentralGoogle Scholar
  44. Singh U, Jialal I (2006) Oxidative stress and atherosclerosis. Pathophysiology 13:129–142. ReviewPubMedGoogle Scholar
  45. Sowers JR (1992) Insulin resistance, hyperinsulinemia, dyslipidemia, hypertension and accelerated atherosclerosis. J Clin Pharm 32:529–535Google Scholar
  46. Stocker R, Keaney JF (2001) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478Google Scholar
  47. Venugopal SK, Devaraj S, Jialal I (2003) C-reactive protein decreases prostacyclin release from human aortic endothelial cells. Circulation 108:1676–1678PubMedGoogle Scholar
  48. Vogiatzi G, Tousoulis D, Stefanadis C (2009) The role of oxidative stress in atherosclerosis. Hellenic J Cardiol 50:402–409. ReviewPubMedGoogle Scholar
  49. Wassmann S, Laufs U, Baumer AT, Muller K, Ahibary K, Linz W, Itter G, Rosen R, Bohm M, Nickenig G (2001) HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolaemic hypertension via reduced production of reactive oxygen species. Hypertension 37:1450–1457PubMedGoogle Scholar
  50. Witzum JL, Steinberg D (1991) Role of oxidized low-density lipoprotein in atherogenesis. J Clin Invest 88(1):785–1792Google Scholar
  51. Xu J, Qian J, Xie X, Lin L, Zou Y, Fu M, Huang z, Zhang G, Su Y, Ge J (2012) High density lipoprotein protects mesenchymal stem cells from oxidative stress-induced apoptosis via activation of the PI3K/Akt pathway and suppression of reactive oxygen species. Int J Mol Sci 13:17104–17120PubMedPubMedCentralGoogle Scholar
  52. Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto I, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K (2003) Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci U S A 100:15883–15888PubMedPubMedCentralGoogle Scholar
  53. Yan LJ, Rajasekaran NS, Sathyanarayanan S, Benjamin J (2005) Mouse HSF1 disruption perturbs redox state and increases mitochondrial oxidative stress in kidney. Antioxid Redox Signal 7:465–471PubMedGoogle Scholar
  54. Zhang L, Jiang H, Gao X, Zou Y, Liu M, Liang Y, Zhu W, Chen H, Ge J (2011) Heat shock transcription factor-1 inhibits H2O2-induced apoptosis via down-regulation of reactive oxygen species in cardiac myocytes. Mol Cell Biochem 347:21–28PubMedGoogle Scholar
  55. Zou Y, Zhu W, Sakamoto M, Quin Y, Akazawa H, Toko H, Mizukami M, Takeda N, Minamino T, Takano H, Nagai T, Nakai A, Komuro I (2003) Heat shock transcription factor I protects cardiomyocytes from ischemia/reperfusion injury. Circulation 108:3024–3030PubMedGoogle Scholar

Male Reproduction

  1. Agarwal A, Nallella KP, Allamaneni SS, Said TM (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 8:616–627PubMedGoogle Scholar
  2. Agletdinov EF, Kamilov FK, Alekhin EK, Romantsov MG, Bulygin KV, Makasheva LO (2008) Gonadotoxic effects of polychlorinated biphenyls in experiments on male rats. Antibiot Khimioter 53:15–18PubMedGoogle Scholar
  3. Aitken RJ (1995) Free radicals lipid peroxidation and sperm function. Reprod Fertil Dev 7:659–668PubMedGoogle Scholar
  4. Aitken RJ (1999) The Amoroso lecture. The human spermatozoon – a cell in crisis? J Reprod Fertil 115:1–7PubMedGoogle Scholar
  5. Aitken RJ, Fisher H (1994) Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays 16:259–267PubMedGoogle Scholar
  6. Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122:497–506PubMedGoogle Scholar
  7. Aitken RJ, Harkiss D, Buckingham DW (1993) Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev 35:302–315PubMedGoogle Scholar
  8. Armstrong JS, Rajasekaran M, Chamulitrat W, Gatti P, Hellstrom WJ, Sikka SC (1999) Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radic Biol Med 26:869–880PubMedGoogle Scholar
  9. Bahadur G, Ozturk O, Muneer A, Wafa R, Ashraf A, Jaman N, Patel S, Oyede AW, Ralph DJ (2005) Semen quality before and after gonadotoxic treatment. Hum Reprod 20:774–781PubMedGoogle Scholar
  10. Dandekar SP, Nandkarni GD, Kulkarni VS, Punekar S (2002) Lipid peroxidation and antioxidant enzymes in male infertility. J Postgrad Med 48:186–189PubMedGoogle Scholar
  11. de Lamirande E, Gagnon C (1995) Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod 10(suppl I):15–21PubMedGoogle Scholar
  12. de Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3:175–194PubMedGoogle Scholar
  13. Farr SB, Kogama T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585PubMedPubMedCentralGoogle Scholar
  14. Gavella M, Lipovac V (1992) NADPH-dependent oxido-reductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl 28:135–141PubMedGoogle Scholar
  15. Garrido N, Meseguer M, Simon C, Pellieer A, Remohi J (2004) Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl 6:59–65PubMedGoogle Scholar
  16. Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ (1996) Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress and sperm function. J Androl 17:276–287PubMedGoogle Scholar
  17. Griveau JF, Renard P, Le Lannou D (1995) Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction in vitro. Int J Androl 18:67–74PubMedGoogle Scholar
  18. Halliwal B (1984) Tell me about free radicals, doctor: a review. J Roy Soc Med 82:747–752Google Scholar
  19. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T (1997) Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 68:519–524PubMedGoogle Scholar
  20. Lewin A, Lavon H (1997) The effect of coenzyme Q10 on sperm motility and function. Mol Asp Med 18(Suppl):S213–S219Google Scholar
  21. Moskovstev SI, Willis J, White J, Mullen BM (2007) Leukocytospermia: relationship to sperm deoxyribonucleic acid integrity in patients evaluated for male factor infertility. Fertil Steril 88:737–740Google Scholar
  22. Mostafa T, Anis TH, EI-Nashar A, Iman H, Othman IA (2001) Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl 24:261–265PubMedGoogle Scholar
  23. Ozbek E, Turkoz Y, Gokdeniz R, Davarci M, Ozugurlu F (2000) Increased nitric oxide production in the spermatic vein of patients with varicocele. Eur Urol 37:172–175PubMedGoogle Scholar
  24. Peeker R, Abramson L, Marklund SL (1997) Superoxide dismutase isoenzymes in human seminal plasma and spermatozoa. Mol Hum Reprod 13:1061–1066Google Scholar
  25. Ragheb AM, Sabanegh ES Jr (2010) Male fertility-implications of anticancer treatment and strategies to mitigate gonadotoxicity. Anticancer Agents Med Cem 10:92–102Google Scholar
  26. Saez F, Motta C, Boucher D, Grizard G (1998) Antioxidant capacity of prostasomes in human semen. Mol Hum Reprod 4:667–672PubMedGoogle Scholar
  27. Sakkas D, Mariethoz E, Mnicsirdi G, Bizzaro D, Bianchi PG, Bianchi U (1999) Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 4:31–37PubMedGoogle Scholar
  28. Sarlos P, Molner A, Kokai M, Gabor GY, Ratky J (2002) Comparative evaluation of the effect of antioxidants in the conservation of ram semen. Acta Vet Hung 50:235–245PubMedGoogle Scholar
  29. Sikka SC, Rajasekaran M, Hellstrom WJ (1995) Role of oxidative stress and antioxidants in male infertility. J Androl 16:464–468PubMedGoogle Scholar
  30. Smith R, Kaune H, Parodi D, Madariaga M, Rios R, Morales I, Castro A (2006) Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod 21:986–993PubMedGoogle Scholar
  31. Spiropoulos J, Turnbull DM, Chinnerry PF (2002) Can mitochondrial DNA mutations cause sperm dysfunctions? Mol Hum Reprod 8:719–721PubMedGoogle Scholar
  32. Suleiman SA, Ali ME, Zaki ZM, el-Malik EM, Nasr MA (1996) Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl 17:530–537PubMedGoogle Scholar
  33. Taiwo AM, Ige SO, Babalola OO (2010) Assessments of possible gonadotoxic effect of lead on experimental male rabbits. Glob Vet 5:282–286Google Scholar
  34. Tremellen K (2008) Oxidative stress and male infertility: a clinical perspective. Hum Reprod Update 14:243–258. ReviewPubMedGoogle Scholar
  35. Twigg J, Irvine DS, Houston P, Fulton P, Michael L, Aitken RJ (1998) Latrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod 4:439–445PubMedGoogle Scholar

Female Reproductive System

  1. Alpay Z, Saed GM, Diamond MP (2006) Female infertility and free radicals: potential role in adhesions and endometriosis. J Soc Gynecol Investig 13:390–398PubMedGoogle Scholar
  2. Aten RF, Duarte KM, Behrman HR (1992) Regulation of ovarian antioxidant vitamins, reduced glutathione, and lipid peroxidation by luteinizing hormone and prostaglandin F2 alpha. Biol Reprod 46:401–407PubMedGoogle Scholar
  3. Attaran M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, Sharma RK (2000) The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med 45:314–320PubMedGoogle Scholar
  4. Bansal RK, Goldsmith PC, He Y, Zaloudek CJ, Ecker JL, Riemer RK (1997) A decline in myometrial nitric oxide synthase expression is associated with labor and delivery. J Clin Invest 99:2502–2508PubMedPubMedCentralGoogle Scholar
  5. Bausero P, Cavaille F, Meduri G, Freitas S, Perrot-Applanat M (1998) Paracrine action of vascular endothelial growth factor in the human endometrium: production and target sites, and hormonal regulation. Angiogenesis 2:167–182PubMedGoogle Scholar
  6. Bedaiwy MA, Falcone T (2003) Peritoneal fluid environment in endometriosis. Clinicopathological implications. Minerva Ginecol 55:333–345PubMedGoogle Scholar
  7. Belo L, Caslake M, Santos-Silva A (2004) LDL size, total antioxidant status and oxidised LDL in normal human pregnancy: a longitudinal study. Atherosclerosis 177:391–399PubMedGoogle Scholar
  8. Ben-Shlomo I, Kokia E, Jackson MJ, Adashi EY, Payne DW (1994) Interleukin-1 beta stimulates nitrite production in the rat ovary: evidence for heterologous cell-cell interaction and for insulin-mediated regulation of the inducible isoform of nitric oxide synthase. Biol Reprod 51:310–318PubMedGoogle Scholar
  9. Bilodeau JF, Hubel CA (2003) Current concepts in the use of antioxidants for the treatment of preeclampsia. J Obstet Gynaecol Can 25:742–750PubMedGoogle Scholar
  10. Blumenfeld Z, Avivi I, Eckman A, Epelbaum R, Rowe JM, Dann EJ (2008) Gonadotropin-releasing hormone agonist decreases chemotherapy-induced gonadotoxicity and premature ovarian failure in young female patients with Hodgkin lymphoma. Fertil Steril 89:166–173PubMedGoogle Scholar
  11. Brougham MF, Crofton PM, Johnson EJ, Evans N, Anderson RA, Wallace WH (2012) Anti-Mullerian hormone is a marker of gonadotoxicity in pre- and postpubertal girls treated for cancer: a prospective study. J Clin Endocrinol Metab 97:2059–2067PubMedGoogle Scholar
  12. Burton GJ, Yung HW (2011) Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens 1:72–78PubMedPubMedCentralGoogle Scholar
  13. Burton GJ, Hempstock J, Jauniaux E (2003) Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod BioMed Online 6:84–96PubMedGoogle Scholar
  14. Burton GJ, Yung HW, Cindrova-Davies T (2009) Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30(Suppl A):S43–S48PubMedGoogle Scholar
  15. Catov JM, Nohr EA, Bodnar LM (2009) Association of periconceptional multivitamin use with reduced risk of preeclampsia among normal-weight women in the Danish National Birth Cohort. Am J Epidemiol 169:1304–1311PubMedPubMedCentralGoogle Scholar
  16. Choi HK, Choi BC, Lee SH, Kim JW, Cha KY, Baek KH (2003) Expression of angiogenesis- and apoptosis-related genes in chorionic villi derived from recurrent pregnancy loss patients. Mol Reprod Dev 66:24–31PubMedGoogle Scholar
  17. Cindrova-Davies T (2009) From placental oxidative stress to maternal endothelial dysfunction. Placenta 30(Suppl A):S55–S65PubMedGoogle Scholar
  18. Cindrova-Davies T, Yung HW, Johns J (2007a) Oxidative stress, gene expression and protein changes induced in the human placenta during labor. Am J Pathol 171:1168–1179PubMedPubMedCentralGoogle Scholar
  19. Cindrova-Davies T, Spasic-Boskovic O, Jauniaux E (2007b) Nuclear factor-kappa B, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress: effects of antioxidant vitamins. Am J Pathol 170:1511–1520PubMedPubMedCentralGoogle Scholar
  20. Ekerhovd E, Enskog A, Caidahl K, Klintland N, Nilsson L, Brannstrom M, Norstrom A (2001) Plasma concentrations of nitrate during the menstrual cycle, ovarian stimulation and ovarian hyperstimulation syndrome. Hum Reprod 16:1334–1339PubMedGoogle Scholar
  21. Hickey M, Krikun G, Kodaman P, Schatz F, Carati C, Lockwood CJ (2006) Long-term progestin-only contraceptive result in reduced endometrial blood flow and oxidative stress. J Clin Endocrinol Metab 9:3633–3638Google Scholar
  22. Hool LC, Corry B (2007) Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9:409–435PubMedGoogle Scholar
  23. Hung TH, Skepper JN, Burton GJ (2001) In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol 159:1031–1043PubMedPubMedCentralGoogle Scholar
  24. Jauniaux E, Watson AL, Hempstock J (2000) Onset of maternal arterial blood flow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol 157:2111–2122PubMedPubMedCentralGoogle Scholar
  25. Jauniaux E, Hempstock J, Greenwold N (2003) Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol 162:115–125PubMedPubMedCentralGoogle Scholar
  26. Jozwik M, Wolczynski S, Szamatowicz M (1999) Oxidative stress markers in preovulatory follicular fluid in humans. Mol Hum Reprod 5:409–413PubMedGoogle Scholar
  27. Kaufmann M, von Minckwitz G, Smith R, Vekro Y, Gianni L, Eiermann W, Howell A, Costa SD, Beuzeboc P, Untech M, Blohmer JU, Sinn HP, Sittek R, Souchon R, Tulusan AH, Volm T, Semu HJ (2003) International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer, review and recommendations. J Clin Oncol 21:2600–2608PubMedGoogle Scholar
  28. Krussel JS, Bielfeld P, Polan ML, Simon C (2003) Regulation of embryonic implantation. Eur J Obstet Gynecol Reprod Biol 110:S2–S9PubMedGoogle Scholar
  29. Klemmensen A, Tabor A, Osterdal ML (2009) Intake of vitamins C and E in pregnancy and risk of pre-eclampsia: prospective study among 57 346 women. BJOG 116:964–974PubMedGoogle Scholar
  30. LaPolt PS, Leung K, Ishimaru R, Tafoya MA, You-hsin Chen J (2003) Roles of cyclic GMP in modulating ovarian functions. Reprod Biomed Online 6:15–23PubMedGoogle Scholar
  31. Lee TH, Wu MY, Chen MJ, Chao KH, Ho HN, Yang YS (2004) Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles. Fertil Steril 82:126–131PubMedGoogle Scholar
  32. Leist M, Single B, Castoldi AF (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486PubMedPubMedCentralGoogle Scholar
  33. Osborn BH, Haney AF, Misukonis MA, Weinberg JB (2002) Inducible nitric oxide synthase expression by peritoneal macrophages in endometriosis-associated infertility. Fertil Steril 77:46–51PubMedGoogle Scholar
  34. Ota H, Igarashi S, Hatazawa J, Tanaka T (1998) Endothelial nitric oxide synthase in the endometrium during the menstrual cycle in patients with endometriosis and adenomyosis. Fertil Steril 69:303–308PubMedGoogle Scholar
  35. Park JK, Song M, Dominguez CE, Walter MF, Santanam N, Parthasarathy S, Murthy AA (2006) Glycodelin mediates the increase in vascular endothelial growth factor in response to oxidative stress in the endometrium. Am J Obstet Gynecol 195:1772–1777PubMedGoogle Scholar
  36. Roberts JM, Myatt L, Spong CY (2010) Vitamins C and E to prevent complications of pregnancy-associated hypertension. N Engl J Med 362:1282–1291PubMedPubMedCentralGoogle Scholar
  37. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529PubMedGoogle Scholar
  38. Sata F, Yamada H, Yamada A (2003) A polymorphism in the CYP17 gene relates to the risk of recurrent pregnancy loss. Mol Hum Reprod 9:725–728PubMedGoogle Scholar
  39. Sharma RK, Agarwal A (2004) Role of reactive oxygen species in gynecologic diseases. Reprod Med Bio 3:177–199Google Scholar
  40. Seino T, Salto H, Kaneko T, Takahashi T, Kawachi H (2002) Eight-hydroxy-2′-deoxyguanosine in granulose cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil Steril 77:1184–1190PubMedGoogle Scholar
  41. Sugino N, Karube-Harada A, Taketani T, Sakata A, Nakamura Y (2004) Withdrawal of ovarian steroids stimulates prostaglandin F2alpha production through nuclear factor-kappaB activation via oxygen radicals in human endometrial stromal cells: potential relevance to menstruation. J Reprod Dev 50:215–225PubMedGoogle Scholar
  42. Suzuki T, Sugino N, Fukaya T, Sugyamas S, Uda T, Takayh R, Yajima A, Sasano H (1999) Superoxide dismutase in normal cycling human ovaries: immunohistochemical localization and characterization. Fertil Steril 72:720–726PubMedGoogle Scholar
  43. Toy H, Camuzcuoglu H, Camuzcuoglu A (2010) Decreased serum prolidase activity and increased oxidative stress in early pregnancy loss. Gynecol Obstet Invest 69:122–127PubMedGoogle Scholar
  44. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346PubMedPubMedCentralGoogle Scholar
  45. Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 264:85–97PubMedGoogle Scholar
  46. Vega M, Urrutia L, Iniguez G, Gabler F, Devoto L, Johnson MC (2000) Nitric oxide induces apoptosis in the human corpus luteum in vitro. Mol Hum Reprod 6:681–687PubMedGoogle Scholar
  47. Xu H, Perez-Cuevas R, Xiong X, Reyes H, Roy C, Julien P, Smith G, von Dadelszen P, Leduc L, Audibert F, Moutquin JM, Piedboeuf B, Shatenstein B, Parra-Cabrera S, Choquette P, Winsor S, Wood S, Benjamin A, Walker M, Helewa M, Dubé J, Tawagi G, Seaward G, Ohlsson A, Magee LA, Olatunbosun F, Gratton R, Shear R, Demianczuk N, Collet JP, Wei S, Fraser WD, INTAPP Study Group (2010) An international trial of antioxidants in the prevention of preeclampsia (INTAPP). Am J Obstet Gynecol 202:239.e1–239.e10Google Scholar
  48. Yung HW, Calabrese S, Hynx D (2008) Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 173:451–462PubMedPubMedCentralGoogle Scholar
  49. Zachara BA, Dobrzynski W, Trafikowska U (2001) Blood selenium and glutathione peroxidases in miscarriage. BJOG 108:244–247PubMedGoogle Scholar

Autoimmune Diseases

  1. Barbosa DS, Cecchini R, EIKadri MZ, Rodriquez MA, Burini RC, Dichi I (2003) Decreased oxidative stress in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 19:837–842PubMedGoogle Scholar
  2. Behaska AA, Wu D, Serafini, Meydani SN (2002) Mechanism of vitamin E inhibition of cyclooxygenase activity in macrophage from old mice: role of peroxynitrite. Free Radic Biol Med 32:503–511Google Scholar
  3. Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Helland G, Thompson-snipes L, Leach MW, Rennick D (1996) Enterocolitis and colon cancer in interleukin -10-deficient mice are associated with aberrant cytokine production and CD4(+)TH1-like response. J Clin Invest 98:1010–1020PubMedPubMedCentralGoogle Scholar
  4. Biniecka M, Fox E, Gao W, Ng CT, Veale DJ, Fearon U, O’Sullivan J (2011) Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arthritis Rheum 63:2172–2182PubMedGoogle Scholar
  5. Bogaert S, De Vos M, Oliever K, Peeters, Elewaut D, Lambrecht B, Poullot P, Laukens D (2011) Involvement of endoplasmic reticulum stress in inflammatory bowel disease: a different implication for colonic and ileal disease. Plos ONE 6, e25589PubMedPubMedCentralGoogle Scholar
  6. Cerhan JR, Sagg KG, Merlino LA, Mikuls TR, Criswell LA (2003) Antioxidant micronutrient and risk of rheumatoid arthritis in a cohort of order women. Am J Epidemiol 157:345–354PubMedGoogle Scholar
  7. Cioffi M, riegler G, Vietri MT, Pilla P, Caserta L, Carratu R, Sica V, Molinari AM (2004) Serum p53 antibodies in patients affected with ulcerated colitis. Inflamm Bovel Dis 10:606–611Google Scholar
  8. Desai PB, Manjunath DS, Kadi S, Chetana K, Vanishree J (2010) Oxidative stress and enzymatic antioxidant status in rheumatoid arthritis: a case control study. Eur Rev Med Pharmacol Sci 14:959–967PubMedGoogle Scholar
  9. EI-Sayed ZA, Farag DH, Eissa S (2003) Tumor suppressor protein p53 and anti-p53 autoantibodies in pediatric rheumatological diseases. Pediatr Allergy Immunol 14:229–233Google Scholar
  10. Edwards SW, Hallett MB (1997) Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today 18:320–324PubMedGoogle Scholar
  11. Fujii S, Katsumata D, Fujimori T (2008) Limits of diagnosis and molecular markers for early detection of ulcerative colitis-associated colorectal neoplasia. Digestion 77(suppl 1):2–12PubMedGoogle Scholar
  12. Gil L, Martinez G, Gonzalez I, Tarinas A, Alvarez A, Giuliani A, Molina R, Tapanes R, Perez J, Leon OS (2003) Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res 47:217–224PubMedGoogle Scholar
  13. Greenspan HC, Aruoma O (1994) Could oxidative stress initiate programmed cell death in HIV infection? A role from plant derived metabolites having synergistic antioxidant activity. Chem Biol Interact 143:145–148Google Scholar
  14. Hamouda HE, Zakaria SS, Ismail SA, Khedr MA, Mayah WW (2011) p53 antibodies, metallothioneins and oxidative stress markers in chronic ulcerative colitis with dysplasia. World J Gastontol 17:2417–2423Google Scholar
  15. Jaworowski A, Crowe SM (1999) Does HIV cause depletion of CD4+ T cells in vivo by the induction of apoptosis? Immunol Cell Biol 77:90–98PubMedGoogle Scholar
  16. Ju SM, Song HY, Lee JA, Lee SJ, Choi SY, Park J (2009) Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-kappaB dependent pathway in human astrocytes. Exp Mol Med 41:86–93PubMedPubMedCentralGoogle Scholar
  17. Kamanli A, Naziroglu M, Aydilek N, Hacievliyagil C (2004) Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell Biochem Funct 22:53–57PubMedGoogle Scholar
  18. Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendehnan HE, Persidsky Y (2007) HIV-1 gp120 compromise es blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 27:123–134PubMedPubMedCentralGoogle Scholar
  19. Karatas F, Ozates I, Canatan H, Halifeoglu I, Karatepe M, Colakt R (2003) Antioxidant status and lipid peroxidation in patients with rheumatoid arthritis. Ind J Med Res 118:178–181Google Scholar
  20. Knekt P, Heliovaara M, Aho K, Aifthan G, Marniemi T, Aromaa A (2002) Serum selenium, serum alpha-tocopherol and the risk of rheumatoid arthritis. Epidemiology 11:402–405Google Scholar
  21. Kuga S, Otsuka T, Nitro H, Nunoi H, Nemoto Y, Nakano T, Ogo T, Umei T, Nihe Y (1996) Suppression of superoxide anion production by interleukin-10 is accompanied by a downregulation of the genes for subunit proteins of NADPH oxidase. Exp Hematol 24:151–157PubMedGoogle Scholar
  22. Kundu S, Ghosh P, Datta S, Ghosh A, Chattopadhyay S, Chatterjee M (2012) Oxidative stress as a potential biomarker for determining disease activity in patients with rheumatoid arthritis. Free Radic Res 46:1482–1489PubMedGoogle Scholar
  23. Mahajan A, Tandon V (2004) Antioxidants and rheumatoid arthritis. J Ind Rheumatol Assoc 12:139–142Google Scholar
  24. Mao L, Wang H, Qiao L, Wang X (2011) Disruption of Nrf2 enhances the upregulation of nuclear factor-kappa B activity, tumor necrosis factor-alpha and matrix metalloproteinase-9 after spinal cord injury in mice. Mediators Inflamm 2010:238321Google Scholar
  25. McArthur JC, Brew BJ (2010) HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS 24:1367–1370PubMedGoogle Scholar
  26. Meydani SN, Beharka AA (1998) Recent developments in vitamin E and the immune response. Nutr Rev 56:s49–s58PubMedGoogle Scholar
  27. Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D, Perno CF (2001) Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 24:411–416PubMedGoogle Scholar
  28. Narushima S, Spitz DR, Oberley LW, Toyokuni S, Miyata T, Gunnett CA, Buettner GR, Zhang J, Ismail H, Lynch RG, Berg DJ (2003) Evidence for oxidative stress in NSAID-induced colitis in IL10−/− mice. Free Radic Biol Med 34:1153–1166PubMedGoogle Scholar
  29. Nicholls SJ, Hazen SL (2009) Myeloperoxidases, modified lipo-proteins and atherogenesis. J Lipid Res 50(Suppl):S346–S351PubMedPubMedCentralGoogle Scholar
  30. Papadopulos-Eleopulos E, Healand-Thomel B, Causer DA, Dufty AP (1989) An alternative explanation for the radiosensitization of AIDS patients. Int J Radiat Oncol Biol Phys 17:695–696PubMedGoogle Scholar
  31. Papadopulos-Eleopulos E, Healand-Thomel B, Causer DA, Turner VF, Papadintrion JM (1991) Changes in thiols and glutathione as consequences of simian immune deficiency virus infection. Lancet 338:1013Google Scholar
  32. Peng KF, Wu XF, Zhao HW, Sun Y (2006) Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells. Chin Med J (Engl) 119:1088–1093Google Scholar
  33. Reddy PV, Gandhi N, Samikkannu T, Saiyed Z, Agudelo M, Yndart A, Khatavkar P, Nair MP (2012) HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int 61:807–814PubMedPubMedCentralGoogle Scholar
  34. Salvemini D, Mazzon E, Dugo L, serraino I, De Sarro A, Caputi AP, Cuzzocrea S (2001) Amelioration of joint disease in a rat model of collagen induced arthritis by M40403, a superoxide dismutase mimetic. Arthritis Rheum 44:2909–2921PubMedGoogle Scholar
  35. Shah A, Kumar A (2010) HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-kappaB pathway and can be silenced by gp120-specific siRNA. J Neuroinflammation 7:96PubMedPubMedCentralGoogle Scholar
  36. Sharon LW, Louise MW, Maureen LH, Jack PV, Peter GW (1997) Oxidative stress and thiol depletion in plasma and peripheral blood lymphocytes from HIV-infected patients: toxicological and pathological implications. AIDS 11:1689–1697Google Scholar
  37. Sporer B, Paul R, Koedel U, Grimm R, Wick M, Goebel FD, Pfister HW (1998) Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J Infect Dis 178:854–857PubMedGoogle Scholar
  38. Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC, Winyard PG, Kettle AJ (2012) Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology 51:1796–1803PubMedGoogle Scholar
  39. Staron A, Makosa G, Koter-Michalak M (2012) Oxidative stress in erythrocyte from patients with rheumatoid arthritis. Rheumatol Int 32:331–334PubMedPubMedCentralGoogle Scholar
  40. Tiden AK, Sjogren T, Svesson M, Bemlind A, Senthilmohan R, Auchere F, Norman H, Markgren PD, Gustavrson S, Schmidt S, Landquist S, Forber LV, Maqon NJ, Paton LN, Jamerson GN, Eriksson H, Kettle AJ (2011) 2-Thioxanthines are suicide inhibitors of myeloperoxidase that block oxidative stress during inflammation. J Biol Chem 286:37578–37589PubMedPubMedCentralGoogle Scholar
  41. Vasanthi P, Nalini G, Rajasekhar G (2009) Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis 12:29–33PubMedGoogle Scholar
  42. Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S, Chebloune Y, Davis RL, Buch SJ (2009) Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 57:734–743PubMedPubMedCentralGoogle Scholar
  43. Williams R, Yao H, Peng F, Yang Y, Bethel-Brown C, Buch S (2010) Cooperative induction of CXCL10 involves NADPH oxidase: implications for HIV dementia. Glia 58:611–621PubMedPubMedCentralGoogle Scholar
  44. Winterboum CC, Kettle AJ (2000) Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med 29:403–409Google Scholar
  45. Wright HL, Moots RJ, Bucknall RC, Edwards SW (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49:1618–1631PubMedGoogle Scholar
  46. Wruck CJ, Fragoulis A, Gurzynski A, Brandenburg LO, Kan YW, Chan K, Hassenpflug J, Freitag-Wolf S, Varoga D, Lippross S, Pufe T (2011) Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Ann Rheum Dis 70:844–850PubMedGoogle Scholar
  47. Wykretowicz A, Adamska K, Krauze T, Guzik P, Szczepanik A, Rutkowska A, Wysoki H (2007) The plasma concentration of advanced oxidation protein products and arterial stiffness in apparently healthy adults. Free Radic Res 41:645–649PubMedGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Mohinder Bansal
    • 1
  • Naveen Kaushal
    • 1
  1. 1.Department of BiophysicsPanjab UniversityChandigarhIndia

Personalised recommendations