Skip to main content

Pigeonpea

  • Chapter
  • First Online:
Broadening the Genetic Base of Grain Legumes

Abstract

Pigeonpea was labeled as an orphan crop but is now a trendy and pacesetter, with ample genetic and genomic information becoming available in recent times. It is now possible to cross wild relatives not only from the Cajanus group placed in the secondary and tertiary gene pool but also the related genera placed in the quaternary gene pool. This is no small achievement for a legume which is an important crop of Asia and Africa and plays a major role in the diet of majority of the people of this region. The need of the hour is further committed research on wide crosses in pigeonpea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakshu L, Venkataraju RR (2001) Antimicrobial activity of Rhynchosia beddomei. Fitoterpia 72:579–582

    Article  CAS  Google Scholar 

  • Bantilan MCS, Joshi PK (1996) Returns to research and diffusion investments on wilt resistance in pigeonpea. Impact series (No. 1) Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics, p 36

    Google Scholar 

  • Bohra A, Mallikarjuna N, Saxena K, Upadhyaya HD, Vales I et al (2010) Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. J Appl Biol 37:83–98

    Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  PubMed  CAS  Google Scholar 

  • Cherian CA, Mallikarjuna N, Jadhav DR, Saxena KB (2006) Open flower segregants selected from Cajanus platycarpus crosses. J SAT Agric Res 2:1–2, ISSN 0973-3094

    Google Scholar 

  • Choudhary P, Khanna SM, Jain PK, Bharadwaj C, Kumar J, Lakhera PC et al (2011) Genetic structure and diversity analysis of the primary gene pool of chickpea using SSR markers. Genet Mol Res 11:891–905

    Article  Google Scholar 

  • Drabu S, Chaturvedi S, Sharma M (2011) Analgesic activity of methanolic extract from aerial parts of Rhynchosia capitata DC. Int J Pharm Technol 3:3590–3600

    CAS  Google Scholar 

  • FAO (2009) FAO stat databases. Retrieved from: http://faostat.fao.org

  • Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059. doi:10.1093/jxb/ers192

    Article  PubMed  CAS  Google Scholar 

  • Flagel LE, Chen L, Chaudhary B, Wendel JF (2009) Coordinated and fine scale control of homoeologous gene expression in allotetraploid cotton. J Hered 100:487–490

    Article  PubMed  CAS  Google Scholar 

  • Fuller DQ, Harvey E (2006) The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol 11:219–246

    Article  Google Scholar 

  • Galili G, Feldman M (1984) Intergenomic suppression of endosperm protein genes in common wheat. Can J Genet Cytol 26:651–656

    CAS  Google Scholar 

  • Goodman MM (1990) Genetic and germplasm stocks worth conserving. J Hered 81:11–16

    PubMed  CAS  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hu G, Housron NL, Pathak D, Schmidt L, Wendel JF (2011) Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 189:1103–1115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jadhav DR, Mallikarjuna N, Sharma HC, Saxena KB (2012a) Introgression of Helicoverpa armigera resistance from Cajanus acutifolius-a wild relative from secondary gene pool of pigeonpea (Cajanus cajan). Asian J Agric Sci 4(4):242–248

    Google Scholar 

  • Jadhav DR, Mallikarjuna N, Rathore A, Pokle D (2012b) Effect of some flavonoids on survival and development of Helicoverpa armigera (Hübner) and Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Asian J Agric Sci 4(4):298–307

    Google Scholar 

  • Kannaiyan J, Nene YL, Reddy MV, Ryan JG, Raju TN (1984) Prevalence of pigeonpea disease and associated crop losses in Asia, Africa and America. Trop Pest Manag 30:62–71

    Article  Google Scholar 

  • Kassa MT, Penmetsa RV, Carrasquilla-Garcia N, Sarma BK, Datta S, Upadhyaya HD, Varshney RV, von Wettberg EJB, Douglas RC (2012) Genetic patterns of domestication in pigeonpea (Cajanus cajan (L.) Millsp.), and wild Cajanus relatives. PLoS ONE 7:e39563. doi:10.1371/journal.pone.0039563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar SP (1985) Crossability, genome relationships and inheritance studies in intergeneric hybrids of pigeonpea. Ph.D. thesis, University of Hyderabad, Hyderabad

    Google Scholar 

  • Kumar S, Gupta S, Chandra S, Singh BB (2003) How wide is the genetic base of pulse crops? In: Ali M, Singh BB, Kumar S, Dhar V (eds) Pulses in new perspectives. Proceedings of the national symposium on crop diversification and natural resource management, Indian Institute of Pulses Research, Kanpur, UP, India, pp 211–221

    Google Scholar 

  • Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39(2):191–199

    Article  Google Scholar 

  • Levy AA, Galili G, Feldman M (1988) Polymorphism and genetic control of high molecular weight glutenin subunit in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity 61:63–72

    Article  CAS  Google Scholar 

  • Mallikarjuna N (1998) Ovule culture to rescue aborting embryos from pigeonpea (Cajanus Cajan L. Millspaugh) wide crosses. Indian J Exp Biol 36:225–228

    CAS  Google Scholar 

  • Mallikarjuna N, Saxena KB (2002) Production of hybrids between Cajanus acutifolius and C. cajan. Euphytica 124(1):107–110

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Saxena KB (2005) A new cytoplasmic male-sterility system derived from cultivated pigeonpea cytoplasm. Euphytica 142(1–2):143–148

    Article  Google Scholar 

  • Mallikarjuna N, Sharma HC, Upadhyaya HD (2007) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. SAT eJournal | ejournalicrisatorg 3(1):4–7

    Google Scholar 

  • Mallikarjuna N, Saxena KB, Jadhav DR (2011a) Cajanus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 21–33

    Chapter  Google Scholar 

  • Mallikarjuna N, Senthivel S, Jadhav DR, Saxena KB, Sharma HC, Upadhyaya HD, Rathore A, Varshney RK (2011b) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130(5):507–514

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Saxena KB, Lakshmi J, Varshney RK, Srikanth S, Jadhav DR (2012a) Differences between Cajanus cajan (L.) Millspaugh and C. cajanifolius (Haines) van der Maesen, the progenitor species of pigeonpea. Genet Resour Crop Evol 59:411–417

    Article  Google Scholar 

  • Mallikarjuna N, Jadhav DR, Saxena KB, Srivastava RK (2012b) Cytoplasmic male sterile systems in pigeonpea with special reference to A7 CMS. Electron J Plant Breed 3(4):983–986

    Google Scholar 

  • Marley PS, Hillocks RJ (1996) Effect of root-knot nematodes (Meloidogyne spp.) on Fusarium wilt in pigeonpea (Cajanus cajan (L.) Millspaugh). Field Crop Res 46:15–20

    Article  Google Scholar 

  • Mula MG, Saxena KB (2010) Lifting the level of awareness on pigeonpea – a global perspective. Research report. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Murthy KSR, Emmannuel S (2011) Nutritional AND anti-nutritional properties of the unexploited wild legume Rhynchosia bracteata benth. Bangladesh J Sci Ind Res 46:141–146

    Article  CAS  Google Scholar 

  • Odeny DA, Jayashree B, Ferguson M, Hoisington D, Cry LJ, Gebhardt C (2007) Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed 126:130–136

    Article  CAS  Google Scholar 

  • Oke DB, Tewe OO, Fetuga BL (1995) The nutrient composition of some cowpea varieties. Niger J Anim Prod 22:32–36

    Google Scholar 

  • Peng J, Korol AB, Fahima T, Rodert MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pumphrey M, Bai J, Laudencia-Chingcuanco D, Gill BS (2009) Non-additive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pundir RPS, Singh RB (1985) Crossability relationships among Cajanus, Atylosia and Rhynchosia species and detection of crossing barriers. Euphytica 34:303–308

    Article  Google Scholar 

  • Punguluri SK, Janaiah K, Govil JN, Kumar PA, Sharma PC (2007) AFLP finger printing in pigeonpea (Cajanus cajan (L.) Mill sp) and its wild relatives. Genet Resour Crop Evol 53:423–431

    Google Scholar 

  • Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18. doi:10.1186/1741-7007-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratnaparkhe MB, Gupta VS (2007) Pigeonpea. In: Kole C (ed) Genome mapping and molecular breeding in plants: pulses, sugar and tuber crops. Springer, Berlin, pp 133–142

    Google Scholar 

  • Saxena KB (2000) Pigeonpea. In: Gupta SK (ed) Plant breeding – theory and techniques. Agrobios, Jodhpur, pp 82–112

    Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeonpea–a review. Trop Plant Biol 1:159–178

    Article  Google Scholar 

  • Saxena KB, Faris DG, Kumar RV (1987) Relationship between seed size and protein content in newly developed high protein lines of pigeonpea. Plant Food Hum Nutr 36:335–340

    Article  Google Scholar 

  • Saxena KB, Ariyanayagam RP, Reddy LJ (1992) Genetics of a high-selfing trait in pigeonpea. Euphytica 59:125–127

    Article  Google Scholar 

  • Saxena KB, Ravikoti VK, Sultana R (2010) Quality nutrition through pigeonpea – a review. Health 2(11):1335–1344

    Article  Google Scholar 

  • Septiningsih E, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Singh NB, Singh IP, Singh BB (2005) Pigeonpea breeding. In: Ali M, Kumar S (eds) Advances in pigeonpea research. Indian Institute of Pulses Research, Kanpur, pp 67–95

    Google Scholar 

  • Srikanth S, Rao MV, Mallikarjuna N (2013) Interspecific hybridization between Cajanus cajan (L.) Millsp. and C. lanceolatus (WV Fitgz) van der Maesen. Plant Genet Resour: Charact Util. doi:10.1017/S1479262113000361

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya HD, Reddy LJ, Gowda CLL, Reddy KN, Singh S (2006) Development of a mini core subset for enhanced and diversified utilization of pigeonpea germplasm resources. Crop Sci 46:2127–2132

    Article  Google Scholar 

  • Upadhyaya HD, Reddy KN, Gowda CLL, Singh S (2007) Phenotypic diversity in the pigeonpea (Cajanus cajan) core collection. Genet Resour Crop Evol 54:1167–1184

    Article  Google Scholar 

  • Upadhyaya HD, Reddy KN, Singh S, Gowda CLL (2012) Phenotypic diversity in Cajanus species and identification of promising sources for agronomic traits and seed protein content. Genet Resour Crop Evol 60:639–659. doi:10.1007/s10722-012-9864-0

    Article  Google Scholar 

  • van der Maesen LJG (1980) India is the native home of pigeonpea. In: Arends JC, Boelema G, de Groot CT, Leeuwenberg AJM (eds) Ibergratulatorius in honorem H. C.D. de Wit landbouwhogeschool Miscellaneous paper no 19. Veenman H, Zonen BV, Wageningen, pp 257–262

    Google Scholar 

  • van der Maesen LJG (1986) Cajanus DC and Alylosia W. &. A. (Leguminosae). Agricultural University Wageningen papers 85-4 (1985). Agricultural University Wageningen, the Netherlands, p 222

    Google Scholar 

  • van der Maeson LJG (1995) Pigeonpea Cajanus cajan. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman, Essex, pp 251–255

    Google Scholar 

  • van der Maesen LJG (2006) Cajanus cajan (L.) Mill sp. In: Brink M, Belay G (eds) Plant resources of Africa 1. Cereals and pulses. Backhuys Publishers, Wageningen

    Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2012a) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK, Chamarthi SK, Murali Mohan S, Mallikarjuna N, Upadhyaya HD, Gaur PM, Krishnamurthy L, Saxena KB, Nigam SN, Pande S (2012b) Advances in genomics research and molecular breeding applications in SAT legume crops by using next generation sequencing and high-throughput genotyping technologies. J Biosci 37:811–820

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Tian L, Lee HS, Chen ZJ (2006a) Non-additive regulation of FRI and FLC loci mediates flowering time variation in Arabidiopsis allopolyploids. Genetics 173:965–974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang J, Tian L, Lee HS et al (2006b) Genome wide non-additive gene regulation in Arabidiopsis allotetraploids. Genetics 172:507–517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wright B (1997) Crop genetic resource policy: the role of ex situ gene banks. Aust J Agric Resour Econ 41:87–115

    Article  Google Scholar 

  • Yang S, Pang W, Ash G, Harper J, Carling J, Wenzel P, Hutter E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Mallikarjuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Mallikarjuna, N., Srikanth, S., Kumar, C.V.S., Srivastava, R.K., Saxena, R.K., Varshney, R.K. (2014). Pigeonpea. In: Singh, M., Bisht, I., Dutta, M. (eds) Broadening the Genetic Base of Grain Legumes. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2023-7_7

Download citation

Publish with us

Policies and ethics