Faba Bean

  • R. Redden
  • J. Paull
  • X. Zong
  • O. Sass
  • T. Yang
  • Li Ling


Faba beans are partially allogamous with both self- and cross-fertilisation enhanced by various bee species. For breeding, this population structure enables population breeding methods or alternatively the development of inbred ‘pure’ lines in bee-proof enclosures and selection among lines. Heterosis occurs, notably in crosses between seed-type groups. Important diseases are Aschochyta blight, chocolate spot, rust, Cercospora leaf spot, downey mildew, and a range of root rot and viral diseases. Forms of host plant resistance include both major and quantitative gene resistances for Aschochyta and for chocolate spot, race-specific major genes for rust and a range of resistance expressions to various viruses. Resistance to broomrape is rare, incomplete, quantitative and of low heritability. Faba bean is very sensitive to abiotic stresses in the reproductive phase. Genetic variation in stomatal conductance and other component traits may provide drought tolerance, heat tolerance is being investigated, and there is a genetic variation for winter hardiness and for waterlogging tolerance. Genetic control of abiotic stress responses is being investigated with biotechnology tools, though previously few SSR markers were available. The application of next-generation sequencing has identified many high-quality novel SSR markers which will improve the development of linkage maps, but at present linkage maps have not been resolved to six linkage groups that represent each chromosome. Markers will be useful for identification of marker-locus-trait associations.


Simple Sequence Repeat Marker Faba Bean Ascochyta Blight Target Region Amplify Polymorphism Winter Hardiness 


  1. Amede T, Schubert S (2003) Mechanisms of drought resistance in grain legumes. I. Osmotic adjustment. Ethiop J Sci 26:37–46Google Scholar
  2. Arbaoui M, Balko C, Link W (2008a) Study of faba bean (Vicia faba L.) winter-hardiness and development of screening methods. Field Crop Res 106:60–67CrossRefGoogle Scholar
  3. Arbaoui M, Link W, Satovic Z, Torres A (2008b) Quantitative trait loci of frost tolerance and physiologically related trait in faba bean (Vicia faba L.). Euphytica 164:93–104CrossRefGoogle Scholar
  4. Avila CM, Sillero JC, Rubiales D, Moreno MT, Torres AM (2003) Identification of RAPD markers linked to Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor Appl Genet 107:353–358PubMedCrossRefGoogle Scholar
  5. Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean. Theor Appl Genet 108:1071–1078PubMedCrossRefGoogle Scholar
  6. Berthelem P, Le Guen J (1974) Rapport d’Activité de Station d’Amélioration des Plantes. Le Rheu, Rennes, pp 1971–1974Google Scholar
  7. Bond DA (1957) Investigations of the breeding system of Vicia faba. Ph.D. thesis, University of DurhamGoogle Scholar
  8. Bond DA (1976) In vitro digestibility of the tests in tannin-free field beans (Vicia faba L.). J Agric Sci (Camb) 86:561–566CrossRefGoogle Scholar
  9. Bond DA (1989) A short review of research on male sterility and prospects for F1 hybrid varieties in field beans (Vicia faba L.). Euphytica 41:87–90CrossRefGoogle Scholar
  10. Bond DA, Poulson MH (1983) Pollination. In: Hebblethwaite P (ed) The faba bean (Vicia faba L.). Butterworth, LondonGoogle Scholar
  11. Bond DA, Jellis GJ, Rowland GG, le Guen J, Robertson LD, Khalil SA, Li-Juan L (1994) Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica 73:151–166CrossRefGoogle Scholar
  12. Borlaug NE, Dowswell CR (2005) Feeding a world of ten billion people: a 21st century challenge. In Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress in the wake of the Double Helix: from the green revolution to the gene revolution, 27–31 May 2003, Bologna, Italy. Avenue Media, Bologna, pp 3–23Google Scholar
  13. Bouhassan A, Sadiki M, Tivoli B (2004) Evaluation of a collection of faba bean (Vicia faba L.) genotypes originating from the Maghreb for resistance to chocolate spot (Botrytis fabae) by assessment in the field and laboratory. Euphytica 135:55–62CrossRefGoogle Scholar
  14. Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, Taheri A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010) Plant breeding and climate changes. J Agric Sci 14:627–637CrossRefGoogle Scholar
  15. Chooi WY (1971) Variation in nuclear content in the genus Vicia. Genetics 68:195–211PubMedPubMedCentralGoogle Scholar
  16. Conner RL, Bernier CC (1982) Inheritance of rust resistance in inbred lines of Vicia faba. Phytopathology 72:1555–1557CrossRefGoogle Scholar
  17. Cubero JI (1973) Evolutionary trends in Vicia faba L. Theor Appl Genet 43:59–65PubMedCrossRefGoogle Scholar
  18. Cubero JI, Nadal S (2005) Faba bean (Vicia faba L.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement, vol 1, Grain legumes. Taylor & Francis, Boca Raton, Florida, pp 163–186Google Scholar
  19. Diaz R, Satovic Z, Roman B, Rubiales D, Cubero JI, Torres AM (2005) QTL analysis of broomrape resistance in faba bean (Vicia faba L.). In: Kovacevic V, Jovanovac S (eds) XL Croatian symposium on agriculture, Opatija, Croatia, pp 181–182Google Scholar
  20. Diaz-Ruiz R, Satovic Z, Avila CM, Alfaro CM, Gutierrez MV, Torres AM, Roman B (2009) Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.). Crop Pasture Sci 60:353–361CrossRefGoogle Scholar
  21. Dõaz R, Torres A, Satovic Z, Gutierrez M, Cubero J, Roman B (2010) Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor Appl Genet 120:909–919CrossRefGoogle Scholar
  22. Drayner JM (1956) Regulation of outbreeding in field beans (Vicia faba). Nature 177:489–490CrossRefGoogle Scholar
  23. Duc G (1997) Faba bean (Vicia faba L.). Field Crop Res 53:99–109CrossRefGoogle Scholar
  24. Duc G, Picard J, Le Guen J, Berthelem P (1985) Note on the appearance of a new nucleocytoplasmic male sterility in Vicia faba after mutagenesis. Agronomy 5:851–854CrossRefGoogle Scholar
  25. Duc G, Bao SY, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong XX (2010) Diversity maintenance and use of Vicia faba L. genetic resources. Field Crop Res 115:270–278CrossRefGoogle Scholar
  26. El Nadi AH (1969) Water relations of beans. I. Effects of water stress on growth and flowering. Exp Agric 5:195–207CrossRefGoogle Scholar
  27. Ellwood S, Phan H, Jordan M, Hane J, Torres A, Avila C, Cruzizquierdo S, Oliver R (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 9:380PubMedCrossRefPubMedCentralGoogle Scholar
  28. Emeran AA, Sillero JC, Rubiales D (2001) Physiological specialisation of Uromyces viciae-fabae. In: AEP (ed) European Association for Grain Legume Research, towards the sustainable production of healthy food, feed and novel products. Proceedings of the 4th European conference on grain legumes, Cracow, p 263Google Scholar
  29. Evans LT (1959) Environmental control of flowering in Vicia faba L. Ann Bot 23:521–546Google Scholar
  30. FAOSTAT (2013) Food and agriculture organisation of the United Nations, RomeGoogle Scholar
  31. Fischer RA, Turner NC (1978) Plant productivity in the arid and semiarid zone. Annu Rev Plant Physiol 29:277–317CrossRefGoogle Scholar
  32. Gong Y, Xu S, Mao W, Hu Q, Zhang G, Ding J, Li Z (2010) Generation and characterization of 11 novel EST derived microsatellites from Vicia faba (Fabaceae). Am J Bot 97:e69–e71PubMedCrossRefGoogle Scholar
  33. Hanelt P, Schäfer H, Schultze-Motel J (1972) Die stellung von I L. in der gattung Vicia L. und betrachtungen zur Enstehung dieser kulturart. Kulturpflanze 20:263–275CrossRefGoogle Scholar
  34. Hanounik SA, Maliha N (1986) Horizontal and vertical resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis 70:770–773CrossRefGoogle Scholar
  35. Hanounik SB, Robertson LD (1988) New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis 72:696–698CrossRefGoogle Scholar
  36. Hanounik SB, Robertson LD (1989) Resistance in Vicia faba germplasm to blight caused by Ascochyta blight. Plant Dis 73:202–205CrossRefGoogle Scholar
  37. Hawtin GC (1982) The genetic improvement of faba bean. In: Hawtin G, Webb C (eds) Faba bean improvement. Martinus Nijhoff, The Hague, pp 15–32CrossRefGoogle Scholar
  38. Hawtin GC, Omar M (1980) International faba bean germplasm collection at ICARDA. FABIS 2:20–22Google Scholar
  39. Ibrahim HM (2010) Heterosis, combining ability and components of genetic variance in faba bean (Vicia faba L.). J King Abdulaziz Univ Meteorol Environ Arid Land Agric Sci 21:35–50Google Scholar
  40. IPCC (Intergovernmental Panel for Climate Change) (2007) Fourth assessment report: climate change. IPCC, Geneva, SwitzerlandGoogle Scholar
  41. Johnston J, Bennett M, Rayburn A, Galbraith D, Price H (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609PubMedCrossRefGoogle Scholar
  42. Kaur S, Pembleton L, Cogan N, Savin K, Leonforte T, Paull J, Materne M, Forster J (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104PubMedCrossRefPubMedCentralGoogle Scholar
  43. Khan HR, Link W, Hocking TJH, Stoddard FL (2007) Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil 292:205–217CrossRefGoogle Scholar
  44. Khan HR, Paull JG, Siddique KHM, Stoddard FL (2010) Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crop Res 115:279–286CrossRefGoogle Scholar
  45. Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 8(5):e63107. doi: 10.1371/journal.pone.0063107 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kimber RBE, Paull JG (2011) Identification and genetics of resistance to Cercospora leaf spot (Cercospora zonata) in faba bean (Vicia faba). Euphytica 177:419–429CrossRefGoogle Scholar
  47. Kimber RBE, Davidson JA, Paull JG (2006) Using genetic diversity within faba bean germplasm to develop resistance to Ascochyta blight. In: First international Ascochyta workshop, Le Tronchet, p B17Google Scholar
  48. Kohpina S, Knight R, Stoddard FL (2000) Genetics of resistance to Ascochyta blight in two populations of faba bean. Euphytica 112:101–107CrossRefGoogle Scholar
  49. Kwon SJ, Hu J, Coyne CJ (2010) Genetic diversity and relationship among 151 faba bean (Vicia faba L.) germplasm entries as revealed by TRAP markers. Plant Genet Resour 8:204–213CrossRefGoogle Scholar
  50. Ladizinsky G (1998) Plant evolution under domestication. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  51. Lang Li-jaun, Yu Z, Xu M, Ying H (1993) Faba bean in China: state-of-the-art review. ICARDA, Aleppo, Syria, pp 1–144Google Scholar
  52. Link W, Dixkens C, Singh M, Schwall M, Melchinger AE (1995) Genetic diversity in European and Mediterranean faba bean germ plasm revealed by RAPD markers. Theor Appl Genet 90:27–32PubMedCrossRefGoogle Scholar
  53. Link W, Ederer W, Gumber RK, Melchinger AE (1997) Detection and characterization of two new CMS systems in faba bean (Vicia faba). Plant Breed 116:158–162CrossRefGoogle Scholar
  54. Link W, Balko C, Stoddard FL (2010) Winter hardiness in faba bean: physiology and breeding. Field Crop Res 115:287–296CrossRefGoogle Scholar
  55. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global food production since 1980. Science 333:616–620PubMedCrossRefGoogle Scholar
  56. Ma Y, Yang T, Guan J, Wang S, Wang H, Sun X, Zong X (2011) Development and characterization of 21 EST-derived microsatellite markers in Vicia faba (fava bean). Am J Bot 98:e22–e24PubMedCrossRefGoogle Scholar
  57. Ma Y, Bao S, Yang T, Hu J, Guan J, He Y, Wang X, Wan Y, Sun X, Jiang J, Gong C, Zong X (2013) Genetic linkage map of Chinese native variety faba bean (Vicia faba L.) based on simple sequence repeat markers. Plant Breed. Online publication. doi: 10.1111/pbr.12074
  58. Makkouk KM, Kumari SG (1995) Screening and selection of faba bean (Vicia faba) germplasm for resistance to bean yellow mosaic potyvirus. J Plant Dis Prot 100:461–466Google Scholar
  59. Makkouk KM, Kumari SG, van Leur JAG (2002) Screening and selection of faba bean (Vicia faba L.) germplasm resistant to bean leafroll virus. Aust J Agric Res 53:1077–1082CrossRefGoogle Scholar
  60. Maurin N, Tivoli B (1992) Variation in resistance of Vicia faba to Ascochyta fabae in relation to disease development in field trials. Plant Pathol 41:737–744CrossRefGoogle Scholar
  61. McDonald GK, Paulsen GM (1997) High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil 196:47–58CrossRefGoogle Scholar
  62. Muratova V (1931) Common beans – Vicia faba L. Trudy po prikladnoi botanike, genetike i selektsii: prilozhenie 50:248–285Google Scholar
  63. Nadal S, Moreno MT, Cubero JI (2004) Registration of ‘Baraca’ faba bean. Crop Sci 44:1864–1865CrossRefGoogle Scholar
  64. Nassib AM, Ibrahim AA, Khalil SA (1982) Breeding for resistance to Orobanche. In: Hawtin G, Webb C (eds) Faba bean improvement. Martinus Nijhoff, The Hague, pp 199–206CrossRefGoogle Scholar
  65. Ouji A, ElBok S, Syed NH, Abdellaoui R, Rouaissi M, Flavell AJ, Elgazzah M (2012) Genetic diversity of faba bean (Vicia faba L.) populations revealed by sequence specific amplified polymorphism (SSAP) markers. Afr J Biotechnol 11:2162–2168Google Scholar
  66. Patto M, Torres A, Koblizkova A, Macas J, Cubero J (1999) Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants. Theor Appl Genet 98:736–743CrossRefGoogle Scholar
  67. Paull JG, Kimber RBE (2006) Breeding faba beans for resistance to chocolate spot. In: Avila CM, Cubero JI, Moreno MT, Suso MJ, Torres AM (eds) International workshop on faba bean breeding and agronomy, Cordoba, pp 117–120Google Scholar
  68. Paull JG, Rose IA, van Leur JAG, Kimber RBE, Seymour M (2006) Breeding faba beans for the Australian environment. In: Avila CM, Cubero JI, Moreno MT, Suso MJ, Torres AM (eds) International workshop on faba bean breeding and agronomy, Cordoba, pp 66–69Google Scholar
  69. Pérez-de-Luque A, Eizenberg H, Grenz JH, Sillero JC, Avila CM, Sauerborn J, Rubiales D (2010) Broomrape management in faba bean. Field Crop Res 115:319–328CrossRefGoogle Scholar
  70. Pope M, Bond DA (1975) Influence of isolation distance on genetic contamination of field bean (Vicia faba L.) seed produced in small plots. J Agric Sci (Camb) 85:509–513CrossRefGoogle Scholar
  71. Požárková D, Koblížková A, Román B, Torres A, Lucretti S, Lysák M, Doležel J, Macas J (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant 45:337–345CrossRefGoogle Scholar
  72. Rashid KY, Bernier CC (1984) Evaluation of resistance in Vicia faba to two isolates of the rust fungus Uromyces viciae-fabae from Manitoba. Plant Dis 68:16–18CrossRefGoogle Scholar
  73. Rashid KY, Bernier CC (1986) Selection for slow rusting in faba bean (Vicia faba L.) to Uromyces viciae-fabae. Crop Prot 5:218–224CrossRefGoogle Scholar
  74. Rashid KY, Bernier CC, Connor RL (1991) Genetics of resistance in faba bean inbred lines to five isolates of Ascochyta fabae. Can J Plant Pathol 13:218–225CrossRefGoogle Scholar
  75. Rispail N, Kal P, Kiss G, Ellis T, Gallardo K, Thompson R, Prats E, Larrainzar E, Ladrera R, Gonzalez E, ArreseIgor C, Ferguson B, Gresshoff P, Rubiales D (2010) Model legumes contribute to faba bean breeding. Field Crop Res 115:253–269CrossRefGoogle Scholar
  76. Robertson LD, Cardona C (1986) Studies on bee activity and outcrossing in increase plots of Vicia faba L. Field Crop Res 15:157–164CrossRefGoogle Scholar
  77. Robertson LD, El-Sherbeeny M (1988) Faba bean germplasm catalogue: pure line collection. ICARDA, Aleppo, p 150Google Scholar
  78. Robertson LD, El-Sherbeeny M (1991) Distribution of discretely scored descriptors in a pure line faba bean (Vicia faba L.) germplasm collection. Euphytica 57:83–92Google Scholar
  79. Robertson LD, Saxena MC (1993) Problems and prospects of stress resistance breeding in faba bean. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool-season food legumes. Wiley, Chichester, pp 37–50Google Scholar
  80. Robertson LD, Sadiki M, Matic R, Lang L (2000) Vicia spp: conserved resources, priorities for collection and future prospects. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Academic, Dordrecht, The Netherlands, pp 623–633Google Scholar
  81. Rojas-Molina MM, Rubiales D, Sillero JC (2006) Pathogenic specialization of Uromyces viciae-fabae in Spain and Portugal. In: Avila CM, Cubero JI, Moreno MT, Suso MJ, Torres AM (eds) International workshop on faba bean breeding and agronomy, Cordoba, pp 154–156Google Scholar
  82. Román MB, Torres AM, Rubiales D, Cubero JI, Satovic Z (2002) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata) resistance in faba bean. Genome 45:1057–1063PubMedCrossRefGoogle Scholar
  83. Román B, Satovic Z, Pozarkova D, Macas J, Dolezel J, Cubero J, Torres A (2004) Development of a composite map in Vicia faba, breeding applications and future prospects. Theor Appl Genet 108:1079–1088PubMedCrossRefGoogle Scholar
  84. Sanz AM, Gonzalez SG, Syed NH, Suso MJ, Saldaña CC, Flavell AJ (2007) Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genomics 278:433–441PubMedCrossRefGoogle Scholar
  85. Satovic Z, Torres A, Cubero J (1996) Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics. Theor Appl Genet 93:1130–1138PubMedCrossRefGoogle Scholar
  86. Saxena MC, Saxena NP, Mohamed AK (1988) High temperature stress. In: Summerfield RJ (ed) World crops: cool season food legumes. Kluwer Academic, Dordrecht, The Netherlands, pp 845–856Google Scholar
  87. Schill B, Melchinger AE, Gumber RK, Link W (1998) Comparison of intra- and inter-pool crosses in faba beans (Vicia faba L.). II Genetic effects estimated from generation means in Mediterranean and German environments. Plant Breed 117:351–359CrossRefGoogle Scholar
  88. Schmidt HE, Carl E, Meyer U (1988) Resistance of field bean (Vicia faba L. spp. Minor (Peterm, em. Harz) Rothm.) to pea enation mosaic virus. Arch Phytopathol Pflanzenschutz 24:77–79CrossRefGoogle Scholar
  89. Serradilla JM, De Mora T, Moreno MT (1993) Geographic dispersion and varietal diversity in Vicia faba L. Genet Resour Crop Evol 40:143–151CrossRefGoogle Scholar
  90. Sillero JC, Villegas-Fernández AM, Thomas J, Rojas-Molina MM, Emeran AA, Fernández-Aparicio M, Rubiales D (2010) Faba bean breeding for disease resistance. Field Crop Res 115:297–307CrossRefGoogle Scholar
  91. Singh AK, Bhatt BP, Upadhyaya A, Kumar S, Sundaram PK, Singh BK, Chandr N, Bharati RC (2012) Improvement of faba bean (Vicia faba L.) yield and quality through biotechnological approach: a review. Afr J Biotechnol 11:15264–15271Google Scholar
  92. Siong LE, Knight R (1980) The effect of inbreeding and hybridization on the seed set ability of faba beans (Vicia faba L.). Sabrao J 12:99–108Google Scholar
  93. Sjodin J (1971) Induced morphological variation in Vicia faba L. Hereditas 67:155–180CrossRefGoogle Scholar
  94. Solaiman Z, Colmer TD, Loss SP, Thompson BD, Siddique KHM (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agric Res 58:406–412CrossRefGoogle Scholar
  95. Stelling D, Ebmeyer E, Link W (1994) Yield stability in faba bean, Vicia faba L. 2. Effects of heterozygosity and heterogeneity. Plant Breed 112:30–39CrossRefGoogle Scholar
  96. Stoddard FL (1993) Limits to retention of fertilized flowers in faba beans (Vicia faba). J Agron Crop Sci 171:251–259CrossRefGoogle Scholar
  97. Suso MJ, Gilsanz S, Duc G, Marget P, Moreno MT (2006) Germplasm management of faba bean (Vicia faba L.): monitoring intercrossing between accessions with inter-plot barriers. Genet Resour Crop Evol 53:1427–1437CrossRefGoogle Scholar
  98. Tanno K, Willcox G (2006) The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el-Kerkh, north-west Syria, late 10th millennium B.P. Veg Hist Archaeobot 15:197–204. doi: 10.1007/s00334-005-0027-5 CrossRefGoogle Scholar
  99. Terzopoulos PJ, Bebeli PJ (2008) Genetic diversity analysis of Mediterranean faba bean (Vicia faba L.) with ISSR markers. Field Crop Res 108:39–44CrossRefGoogle Scholar
  100. Torres A, Weeden N, Martõn A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945PubMedCrossRefGoogle Scholar
  101. Van de Ven WTG, Duncan N, Ramsay G, Phillips M, Powell W, Waugh R (1993) Taxonomic relationships between V. faba and its relatives based on nuclear and mitochondrial RFLPs and PCR analysis. Theor Appl Genet 86:71–80PubMedCrossRefGoogle Scholar
  102. Ven W, Waugh R, Duncan N, Ramsay G, Dow N, Powell W (1991) Development of a genetic linkage map in Vicia faba using molecular and biochemical techniques. Ann Appl Biol 27:49–54Google Scholar
  103. Villegas-Fernández AM, Sillero JC, Emeran AA, Winkler J, Raffiot B, Tay J, Flores F, Rubiales D (2009) Identification and multi-environment validation of resistance to Botrytis fabae in Vicia faba. Field Crop Res 114:84–90CrossRefGoogle Scholar
  104. Wang H, Xuxiao Zong X, Jianping Guan J, Yang T, Sun X, Yu Y, Redden R (2012) Genetic diversity and relationship of global faba bean (I L.) germplasm revealed by ISSR markers. Theor Appl Genet 124:789–797PubMedCrossRefGoogle Scholar
  105. Yang T, Bao S, Ford R, Jia T, Guan J, He Y, Sun X, Jiang J, Hao J, Zhang X, Zong X (2012) High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics 13:602PubMedCrossRefPubMedCentralGoogle Scholar
  106. Ye L, Lang L, Xia M, Tu J (2003) Faba beans in China. China Agricultural Press, Beijing. (in Chinese)Google Scholar
  107. Zeid M, Schön CC, Link W (2001) Genetic diversity in recent elite faba bean lines. Czech J Genet Plant Breed 37:34–40Google Scholar
  108. Zeid M, Schön C-C, Link W (2004) Hybrid performance and AFLP-based genetic similarity in faba bean. Euphytica 139:207–216CrossRefGoogle Scholar
  109. Zeid M, Mitchell S, Link W, Carter M, Nawar A, Fulton T, Kresovich S (2009) Simple sequence repeats (SSRs) in faba bean: new loci from Orobanche resistant cultivar ‘Giza 402’. Plant Breed 128:149–155CrossRefGoogle Scholar
  110. Zong X, Liu X, Guan J, Wang S, Liu Q, Paull JG, Redden R (2009) Molecular variation among Chinese and global winter faba bean germplasm. Theor Appl Genet 118:971–978PubMedCrossRefGoogle Scholar
  111. Zong X, Ren J, Guan J, Wang S, Liu Q, Paull JG, Redden R (2010) Molecular variation among Chinese and global germplasm in spring faba bean areas. Plant Breed 129:508–513Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • R. Redden
    • 1
  • J. Paull
    • 2
  • X. Zong
    • 3
  • O. Sass
    • 4
  • T. Yang
    • 3
  • Li Ling
    • 5
  1. 1.Australian Grains GenebankDepartment of Environment and Primary IndustriesHorshamAustralia
  2. 2.School of Agriculture, Food and WineUniversity of AdelaideAdelaideAustralia
  3. 3.Institute of Crop Sciences/National Key Facility for Crop Germplasm Resources and Genetic ImprovementChinese Academy of Agricultural SciencesBeijingChina
  4. 4.Norddeutsche PflanzenzuchtHoltseeGermany
  5. 5.Liaoning Institute of Cash CropsLiaoning Academy of Agricultural SciencesLiaoyangChina

Personalised recommendations