Skip to main content

Development of Insect Resistance to Plant Biopesticides: An Overview

  • Chapter
Advances in Plant Biopesticides

Abstract

Plant-incorporated protectants (PIPs) and botanical biochemical pesticides have been widely used as alternative pesticides to synthetic chemical insecticides in the cropping industry. Usually, it takes longer for insects to develop a resistance to such alternative pesticides because these pesticides have broad or non-specific mode of actions. The fact that they are naturally derived pesticides and have multiple modes of action does not mean they are less susceptible to resistance. This review provides information about the resistance development in insect population against PIPs (Bt crop) and botanical pesticides. The mechanisms of resistance, evidence of resistance to these biopesticides, resistance management, and future trend for plant biopesticides are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Brattsten LB, Mullin CA, Yu SJ (1986) Enzymes involved in the metabolism of plant allelochemicals. In: Brattsten LB, Ah-mad S (eds) Molecular aspects of insect plant associations. Plenum Press, New York

    Google Scholar 

  • Akhtar Y, Isaman MB (2004) Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. Appl Entomol 128:32–38

    Article  CAS  Google Scholar 

  • Akhtar Y, Yeoung YR, Isman MB (2008) Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipluncta. Phytochem Rev 9:77–88

    Google Scholar 

  • Akhurst RJ, James JW, Bird L, Beard C (2003) Resistance to the Cry1Ac δ endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol 96:1290–1299

    CAS  PubMed  Google Scholar 

  • Barnard DR, Xue RD (2004) Laboratory evaluation of mosquito repel lents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). J Med Entomol 41(4):726–730

    Article  CAS  PubMed  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat BioTechnol 23:57–62

    Article  CAS  PubMed  Google Scholar 

  • Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manag 256:2166–2174

    Article  Google Scholar 

  • Berenbaum MR (1986) Target site insensitivity in insect-plant interaction. In: Brattsten LB, Ahmad S (eds) Molecular aspects of insect plant interaction, 1st edn. Plenum Press, New York

    Google Scholar 

  • Boerboom C (2001) Glyphosate resistant weeds. http://128.104.239.6/uw_weeds/extension/articles/glyphres.htm. Accessed 5 Feb 2013

  • Bomford MK, Isman MB (1996) Desensitization of fifth instar Spodoptera litura to azadirachtin and neem. Entomol Exp Appl 81:301–313

    Article  Google Scholar 

  • Bonning BC (1990) Insensitive acetylcholinesterase in insecticide resistant mosquitoes. In: Cassida JE (ed) Pesticides and alternatives: innovative chemical and biological approach to pest control, 1st edn. Elsevier, New York

    Google Scholar 

  • Bowman HG (1981) Insect responses to microbial infections. In: Burges HD (ed) Microbial control of pests and plant diseases 1970–1980, 1st edn. Academic, New York

    Google Scholar 

  • Briese DT (1981) Resistance of insect species to microbial pathogens. In: Davidson W (ed) Pathogenesis of invertebrate microbial diseases. Allanheld Osmun, Totowa

    Google Scholar 

  • Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular evolutionary genetics, 1st edn. Plenum, New York

    Google Scholar 

  • Burd AD, Gould F, Bradley JR, Van Duyn JW, Moar WJ (2003) Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. J Econ Entomol 96:137–142

    Article  CAS  PubMed  Google Scholar 

  • Caroll CR, Hoffman CA (1980) Chemical feeding deterrent mobilized in response to insect herbivory and counter adaptation by Epilachna tredecimnotata. Science 209:414–416

    Article  Google Scholar 

  • Champagne DE, Koul O, Isman MB, Scudder GGE, Towers GHN (1992) Biological activity of limonoids from the Rutales. Phytochemstry 31:377–394

    Article  CAS  Google Scholar 

  • Chiu SF (1989) Recent advances in research on botanical insecticides in China. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin, 1st edn. ACS Symposium Series, No. 387, Washington, DC, USA

    Google Scholar 

  • Cloyd RA (2012) Biopesticides: are they immune to resistance? http://www.greenhousegrower.com. Accessed 19 Jan 2013

  • Commins HN (1977) The development of insecticide resistance in the presence of migration. J Theor Biol 65:399–420

    Article  Google Scholar 

  • Compton SG (1987) Aganais speciosa and Danaus chrysippus (Lepidoptera) sabotage the latex defences of their host plants. Ecol Entomol 12:115–118

    Article  Google Scholar 

  • Cullen E, Prost R, Volenberg D (2008) Insect resistance management and refuge requirements for Bt corn. http://corn.agronomy.wisc.edu/Management/pdfs/A3857.pdf. Accessed 19 Jan 2013

  • Curtis CF (1987) Genetic aspects of selection for resistance. In: Ford MG, Khambay BPS, Sawicki RM (eds) Combating resistance to xenobiotics, 1st edn. Ellis Horwood, Chichester

    Google Scholar 

  • Das B, Sarker P, Rahman MD (2008) Aphicidal activity of some in digenous plant extracts against bean aphid Aphis craccivora Koch (Homoptera: Aphididae). J Pest Sci 81:153–159

    Article  Google Scholar 

  • Davoudi A, Shayesteh N, Shirdel D, Hosseinzadeh A (2011) Effect of diethyl maleate on toxicity of linalool against two stored product in sects in laboratory condition. Afr J Biotechnol 10(48):9918–9921

    CAS  Google Scholar 

  • De Barjac H (1987) Operational bacteria insecticides and their potential for future improvement. In: Aramorosch K (ed) Biotechnology in vertebrate pathology and cell culture, 1st edn. Academic, San Diego

    Google Scholar 

  • Dowd PM, Gagne CC, Sparks TC (1987) Enhanced pyrethroid hydrolysis in pyrethroid resistant larvae of tobacco budworm, Heliothis virescens (F.). Pestic Biochem Physiol 28:9–16

    Article  CAS  Google Scholar 

  • Edwards PE, Wanjura WJ (1989) Eucalypt-feeding insects bite off more than they can chew: sabotage of induced defenses? Oikos 54:246–248

    Article  Google Scholar 

  • Farnham AW (1973) Genetic of resistance of pyrethroid-selected house flies, Musca domestica L. Pestic Sci 4(4):513–520

    Article  CAS  Google Scholar 

  • Feng R, Isman MB (1995) Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Experientia 51:831–833

    Article  CAS  Google Scholar 

  • Flexner JL, Lighthard B, Croft BA (1986) The effects of microbial pesticides on non-target, beneficial arthropods. Agric Ecosyst Environ 3:515–518

    Google Scholar 

  • Frutos R, Rang C, Royer M (1999) Managing resistance to plants producing Bacillus thuringiensis toxins. Crit Rev Biotechnol 19:227–276

    Article  CAS  Google Scholar 

  • Gaham LJ, Ma YT, Cobble MLM, Gould F, Moar WJ, Heckel DG (2005) Genetic basis of resistance to Cry 1Ac and Cry 2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 98:1357–1368

    Article  Google Scholar 

  • Gokce A, Stelinski LL, Whalon ME (2005) Behavioral and electrophysiological responses of leafroller moths to selected plant extracts. Environ Entomol 34:1426–1432

    Article  Google Scholar 

  • Gokce A, Whalon ME, Cam HT, Yanar Y, Demirtas IM, Goren N (2006) Plant extract contact toxicities to various developmental stages of Colorado potato beetles (Coleoptera: Chyrsomelidae). Ann Appl Biol 148:197–202

    Article  Google Scholar 

  • Gokce A, Whalon ME, Cam HT, Yanar Y, Demirtas IM, Goren N (2007) Contact and residual toxicities of 30 plant extracts to Colorado potato beetle larvae. Arch Phyopathol Plant Prot 40:441–450

    Article  Google Scholar 

  • Gould F (1988) Evolutionary biology and genetically engineered crops. BioScience 38(1):26–33

    Article  Google Scholar 

  • Gould F (1995) Strategies for developing and deploying pesticidal cotton, rice and corn/maize for use in poor and developing countries. Presented at the Bellagio meeting on Bt resistance, October 1995 (unpublished)

    Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  CAS  PubMed  Google Scholar 

  • Govindachari TR (1992) Chemical and biological investigations on Azadirachta indica (neem tree). Curr Sci 63(3):117–122

    CAS  Google Scholar 

  • Hassen DJ, Cuomo J, Khan M, Gallagher RT, Ellenberger WP (1994) Advances in neem and azadirachtin chemistry and bioactivity. In: Hedin J, Menn J, Hollingworth RM (eds) Natural and engineered pest management agents. ACS symposium series 551. American Chemical Society, Washington, DC

    Google Scholar 

  • Holloway GJ, McCaffery AR (1988) Reactive and preventative strategies for the management of insecticide resistance. Brighton Crop Prot Conf 1988:465–470

    Google Scholar 

  • Humeres EC, Morse JG (2006) Resistance of avocado thrips (Thysanoptera: Thripidae) to sabadilla, a botanically derived bait. Pest Manag Sci 62(9):886–889

    Article  CAS  PubMed  Google Scholar 

  • Hummelbruner LA, Isman MB (2001) Acute, sublethal, antifeedant and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). J Agric Food Chem 49:715–720

    Article  Google Scholar 

  • Isman MB (2002) Insect antifeedants. Pesticide Outlook, pp 152–157

    Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Jackson RE, Bradley JR, Van Duyn JW (2003) Field performance of transgenic cottons expressing one or two Bacillus thuringiensis endotoxins against bollworm, Helicoverpa zea (Boddie). J Cotton Sci 7:57–64

    Google Scholar 

  • Kamaraj C, Rahuman A, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 103:325–331

    Article  CAS  PubMed  Google Scholar 

  • Karim S, Riazuddin S, Gould F, Dean DH (2000) Determination of receptor binding properties of Bacillus thuringiensis endotoxins to cotton bollworm (Helicoverpa zea) and pink bollworm (Pectinophora gossypiella) midgut brush border membrane vesicles. Pest Biochem Physiol 67:198–216

    Article  CAS  Google Scholar 

  • Khalid S, Shad RA (2002) Potential advantage of recent allelochemical discoveries and agro ecosystem. Prog Farm 11:30–35

    Google Scholar 

  • Khater HF (2012) Prospects of botanical biopesticides in insect pest management. Pharmacology 3:641–655

    Google Scholar 

  • Kilpatrick JW, Quarternam KD (1952) Field studies on the resting habits of flies in relation to chemical control part II in rural areas. Am J Trop Med Hyg 1:1026–1031

    CAS  PubMed  Google Scholar 

  • Koul O, Walia S (2009) Comparing impacts of plant extracts and pure allelochemicals and implications for pest control. http://www.cabi.org/cabreviews. Accessed 19 Jan 2013

  • Koul O, Singh G, Singh R, Singh J, Daniewski WM, Berlozecki S (2004a) Bioefficacy and mode of action of some limonoids of salannin group from Azadirachta indica A. Juss and their role in a multicomponent system against lepidopteran larvae. J Biosci 29:409–416

    Article  CAS  PubMed  Google Scholar 

  • Koul O, Kaur H, Goomber S, Wahab S (2004b) Bioefficacy of rocaglamide from Aglaia elaeagnoidea (syn. A. roxburghiana) against gram pod borer, Helicoverpa armigera (Hubner). J Appl Entomol 128:177–181

    Article  CAS  Google Scholar 

  • Krattiger AF (1996) Insect resistance in crops: a case study of Bacillus thuringiensis (Bt) and its transfer to developing countries. http://www.isaaa.org/kc/Publications/pdfs/isaaabriefs/Briefs%202.pdf. Accessed 19 Jan 2013

  • Krieger RI, Feeny PP, Wilenson CF (1971) Detoxification enzymes in the guts of caterpillars: an evolutionary answer to plant defences. Science 172:579–581

    Article  CAS  PubMed  Google Scholar 

  • Leatemia JA, Isman MB (2004) Insecticidal activity of crude seed extracts of Annona spp., Lansium domesticum and Sandoricum koetjape against Lepidopteran larvae. Phytoparasitica 32(1):30–37

    Article  Google Scholar 

  • Leatherman M (1997) Resistance. http://www.udel.edu/chem/C465/senior/fall97/insecticide/resist.html. Accessed 21 Jan 2013

  • Little EJ, McCaffery AR, Walker CH, Parker T (1989) Evidence for an enhanced metabolism of cypermethrin by a monooxygenase in a pyrethroid resistant strain of the tobacco budworm (Heliothis virescens). Pestic Biochem Physiol 34:58–68

    Article  CAS  Google Scholar 

  • Liu YB, Tabashnik BE, Dennehy TJ, Patin AL, Sims MA, Meyer SK, Carrière Y (2001) Effects of Bt cotton and Cry1Ac toxin on survival and development of pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol 94:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Lloyd CJ, Parkin EA (1963) Further studies on a pyrethrum resistant strain of the granary weevil, Sitophilus granarius (L.). J Sci Food Agric 14(9):655–663

    Article  CAS  Google Scholar 

  • Maestre RH (2012) What causes insecticide resistance? http://www.magicexterminating.com/. Accessed 28 Dec 2012

  • Maier PP, Baker WC, Bogue MD, Kilparick JW, Quarterman KD (1952) Field studies on the resting habits of flies in relation to chemical control part I in urban areas. Am J Trop Med Hyg 1:1020–1025

    CAS  PubMed  Google Scholar 

  • Mallet J (1989) The evolution of insecticides resistance: have the insects won? Tree 4(11):336–340

    CAS  PubMed  Google Scholar 

  • Mallet J, Porter P (1992) Preventing insect adaptation to insect resistant crops: are seed mixtures or refugia the best strategy? Proc R Soc Lond B 250:165–169

    Article  Google Scholar 

  • Manyangarirwa W, Turnbull M, McCutcheon GS, Smith JP (2006) Gene pyramiding as a Bt resistance management strategy: how sustainable is this strategy? Afr J Biotechnol 5(10):781–785

    CAS  Google Scholar 

  • May RM, Dobson AP (1986) Population dynamics and the rate of evolution of pesticide resistance. In: National Research Council (ed) Pesticide resistance: strategies and tactics for management, 1st edn. National Academy Press, Washington, DC

    Google Scholar 

  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195

    Article  CAS  PubMed  Google Scholar 

  • McGaughey WH, Beeman RW (1988) Resistance to Bacillus thuringiensis in colonies of Indian meal moth (Lepidoptera: Pyralidae). J Econ Entomol 81:28–33

    Article  Google Scholar 

  • Miller TA (1988) Mechanisms of resistance to pyrethroid insecticide. Parasitol Today 4(7):S8–S12

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi J, Grace TDC, Waterhouse DF (1970) Studies on the effect of rotenone on the growth of insect cells cultivated in vitro. Entomol Exp Appl 13(4):467–473

    Article  CAS  Google Scholar 

  • Moore LV, Scudder GGE (1986) Ouabain resistant Na, K-ATPases and cardenolide tolerance in the large milkweed bug, Oncopeltus fasciatus. J Insect Physiol 32:27–33

    Article  CAS  Google Scholar 

  • Morris CE, Harrion JB (1984) Central nervous system features of a nicotine resistant insect, the tobacco hornworm Manduca sexta. Tissue Cell 16(4):601–612

    Article  CAS  PubMed  Google Scholar 

  • Murray CL (1996) A P-glycoprotein-like mechanism in the nicotine resistant insect, Manduca sexta. PhD dissertation, Ottawa-Carleton Institute of Biology, Ottawa

    Google Scholar 

  • Mutero A, Pralavorio M, Bride JM, Fournier D (1994) Resistance-associated point mutations in insecticide insensitive acetylcholinesterase. Proc Natl Acad Sci U S A 91:5922–5926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (1986) Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci U S A 94:7464–7468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omer AD, Leigh TF, Granett J (1992) Insecticide resistance in field populations of greenhouse whitefly (Homoptera: Aleyrodidae) in the San Joaquin Valley (California) cotton cropping system. J Econ Entomol 85:21–27

    Article  CAS  Google Scholar 

  • Onstad DW (2008) Insect resistance management. Elsevier, Amsterdam

    Google Scholar 

  • Plapp FW (1984) The genetic basis of insecticide resistance in the housefly: evidence that a single locus plays a major role in metabolic resistance to insecticides. Pestic Biochem Physiol 22:194–201

    Article  CAS  Google Scholar 

  • Polumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20:739–765

    Article  Google Scholar 

  • Raffa KF (1989) Genetic engineering of trees to enhance resistance to insects evaluating the risk of biotype evolution and secondary pest outbreak. Bioscience 39(8):524–534

    Article  Google Scholar 

  • Resistance Management for Sustainable Agriculture and Improved Public Health (2012) http://www.irac-online. Accessed 22 Dec 2012

  • Roush RT (1997) Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pestic Sci 51:328–334

    Article  CAS  Google Scholar 

  • Roush RT (1998) Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc Lond B 353:1777–1786

    Article  CAS  Google Scholar 

  • Salako EA (2002) Plant protection for the resource-poor farmers. A key note address at Nigerian Society for Plant Protection. In: 30th annual conference, UNAAB, Abeokuta 1–4 Sept 2002

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microb Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  • Schumutterer H (1995) The neem tree. VCH, Weinheim

    Book  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Rup PJ, Koul O (2008) Bioefficacy of Eucalyptus camaldulensis var. obtusa and Luvunga scandens essential oils against Spodoptera litura (Lepidoptera: Nocutidae). Biopest Int 4:128–137

    Google Scholar 

  • Singh R, Koul O, Rup PJ, Jindal J (2009) Toxicity of some essential oil constituents and their binary mixtures against Chilo partellus Swinhoe (Lepidoptera: Pyralidae). Int J Trop Insect Sci 29:93–101

    Article  CAS  Google Scholar 

  • Sisterson MS, Antilla L, Carriere Y, Ellers-Kirk C, Tabashnik BE (2004) Effects of insect population size on evolution of resistance to transgenic crops. J Econ Entomol 97:1413–1424

    Article  PubMed  Google Scholar 

  • Stone TB, Sims SR, Marrone PG (1989) Selection of tobacco bud worm for resistance to a genetically engineered Pseudomonas fluorescens containing the delta-endotoxin of Bacillus thuringiensis subsp. kurstaki. J Invert Pathol 53:228–234

    Article  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tabashnik BE, Carriere Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton M, Zhao JZ (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and filed. J Econ Entomol 96:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    Article  CAS  PubMed  Google Scholar 

  • Talukder FA (2006) Plant products as potential stored-product insect management agents: a mini review. Emir J Agric Sci 18(1):17–32

    Article  Google Scholar 

  • Tsukamoto M (1983) Methods of genetic analysis of insecticide resistance. In: Georghiou GP, Saito T (eds) Pest resistance to pesticides, 1st edn. Plenum, New York

    Google Scholar 

  • U.S. Environmental Protection Agency (1998) The environmental protection agency’s white paper on Bt plant-pesticide resistance management. EPA, Washington, DC

    Google Scholar 

  • Walker CH, Sibly RM, Hopkin SP, Peakall DB (2012) Principle of ecotoxicology. CRC Press, Boca Raton

    Google Scholar 

  • Wardlow LR, Ludlam FAB, Bradley LF (1976) Pesticide resistance in glasshouse whitefly (Trialeurodes vaporariorum Westwood). Pestic Sci 7:320–324

    Article  Google Scholar 

  • Warthen JD (1989) Neem (Azadirachta indica A. Juss): organisms affected and reference list update. Proc Entomol Soc Wash 91:367–388

    Google Scholar 

  • Wilcox DR, Shivakumar AG, Melin BE, Miller MF, Benson TA, Shopp CW, Casuto D, Gundling GJ, Bolling TJ, Spear BB, Fox JL (1986) Genetic engineering of bioinsecticides. In: Inouye M, Sarma R (eds) Protein engineering: applications in science, medicine, and industry, 1st edn. Academic, Orlando

    Google Scholar 

  • Wilding N (1986) The pathogens of diamondback moth and their potential for its control a review. In: Talekar NS (ed) Diamondback moth management: proceedings of the first international workshop. Asian Vegetable Research and Development Center, Shanhua

    Google Scholar 

  • Wood RJ, Bishop JA, Lees DR (1981) Genetic consequences of man-made change. Academic, New York

    Google Scholar 

  • Zou YQ, Zheng BZ (1988) The toxicity of some insecticides to green house whitefly (Trialeurodes vaporariorum Westwood) and monitoring of resistance. Acta Phytophylacica Sin 15:277–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadi V. P. Reddy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Tangtrakulwanich, K., Reddy, G.V.P. (2014). Development of Insect Resistance to Plant Biopesticides: An Overview. In: Singh, D. (eds) Advances in Plant Biopesticides. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2006-0_4

Download citation

Publish with us

Policies and ethics