Skip to main content

Nanotechnology and Plant Biopesticides: An Overview

  • Chapter
Advances in Plant Biopesticides

Abstract

The increasing worldwide population and demand for higher food stocks require application of modern techniques for manifold agricultural production as well as minimizing losses during cultivation of crops, transportation, and storage. Various methods have been involved and used to combat insect pests since ancient period. During the nineteenth century, inorganic, botanical, and natural pesticides have been mostly exploited resulting in reduced losses in agricultural yield. Synthesis of new chemicals based on discovery of new structure elucidation and biological activities of various compounds have been invented globally. Further, the severe adverse effects of the chemical pesticides on the environment mainly due to development of resistance, residue problem, and harmful effect on beneficial arthropods have been recorded in the past that led to unrest among public which resulted quick actions for stricter regulations and legislation for reducing their wider use. Since the resistance problem in pests have been rapidly found in mostly all the classes of arthropods, the advance approach to increase the efficiency of pesticides is now known to be the application of nanotechnologies in modern formulation technologies. In this chapter we have discussed in detail about the possibility of application of nanotechnology in improving the bioactivities of plant biopesticides against pests of agriculture and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abduz Zahir A, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5(Supplementary):95–102

    CAS  Google Scholar 

  • Allan GG, Chopra CS, Neogi AN, Wilkins RM (1971) Design and synthesis of controlled release pesticide-polymer combinations. Nature 234:349–351

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Coelho CA, Souza NA, Gouveia C, Silva VC, Gonzalez MS, Rangel EF (2009) Effect of fruit and leaves of Meliaceae plants (Azadirachta indica and Melia azedarach) on the development of Lutzomyia longipalpis larvae (Diptera: Psychodidae: Phlebotominae) under experimental conditions. J Med Entomol 46:1125–1130

    Article  PubMed  Google Scholar 

  • Asharani PV, Nair G, Zhiyuan H, Manoor P, Valiyaveetti S (2007) Potential health impacts of silver nanoparticles. Abstracts of papers, 234th ACS National Meeting, Boston, MA, USA, 19–23 August 2007, TOXI-099

    Google Scholar 

  • Bailey KL, Boyetchko SM, Langle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229

    Article  Google Scholar 

  • Barati R, Golmohammadi G, Ghajarie H, Zarabi M, Mansouri R (2013) The effects of some botanical insecticides and pymetrozine on life table parameters of silver leaf whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Pesticidi i fitomedicina 28(1):47–55

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nano-silica from medicine to pest control. J Parlog Res 103(1):253–258

    CAS  Google Scholar 

  • Bhattacharyya A (2009) Nanoparticles from drug delivery to insect pest control. Akshar 1(1):1–7

    Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano-particles-a recent approach to insect pest control. Afr J Biotech 9:3489–3493

    CAS  Google Scholar 

  • Brecht M, Datnoff L, Nagata R, Kucharek T (2003) The role of silicon in suppressing tray leaf spot development in St. Augustine grass. Publication in University of Florida, pp 1–4

    Google Scholar 

  • Campos M, Phillips TW (2013) Laboratory evaluation of attract-and-kill formulations against the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Retrieved from http://krex.ksu.edu

  • Casida JE (1980) Pyrethrum flowers and pyrethroid insecticides. Environ Health Perspect 34:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casida JE, Quistad GB (2000) Insecticide targets: learning to keep up with resistance and changing concepts of safety. Agric Chem Biotechnol 43:185–191

    CAS  Google Scholar 

  • Chakravarthy AK, Bhattacharyya A, Shashank PR, Timothy T, Doddabasappa EB, Swapan Mandal K (2012a) DNA-tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera Noctuidae). Afr J Biotechnol 11(38):9295–9301

    Article  CAS  Google Scholar 

  • Chakravarthy AK, Chandrashekharaiah B, Subhash K, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P (2012b) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-Tio2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6(3):271–281

    Google Scholar 

  • Chin CP, Wu HS, Wang SS (2011) New approach to pesticide delivery using nanosuspensions: research and applications. Ind Eng Chem Res 50:7637–7643

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Pest Sci 84:99–105

    Article  Google Scholar 

  • De Villiers SM, Hoisington DA (2011) The trends and future of biotechnology crops for insect pest control. Afr J Biotechnol 10(23):4677–4681

    Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals. doi:10.1007/s10534-013-9667-6

    PubMed  Google Scholar 

  • Dubey NK, Shukla R, Kumar A, Singh P, Prakash B (2010) Prospects of botanical pesticides in sustainable agriculture. Curr Sci 98(4):479–480

    Google Scholar 

  • Dutta P, Reddy SGE, Borthaku BK (2013) Effect of neem kernal aqueous extract (NKAE) in Tea Mosquito Bug, Helopeltis theivora (Waterhouse, 1886) (Heteroptera: Miridae). Munis Entomol Zool 8(1):213–218

    Google Scholar 

  • Elek N, Hoffman R, Raviv U (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloid Surf A 372(1–3):66–72

    Article  CAS  Google Scholar 

  • Fei Yi, Chunhua Zou, Qiongbo Hu, Meiying Hu (2012) The joint action of Destruxins and botanical insecticides (Rotenone, Azadirachtin and Paeonolum) Against the Cotton Aphid, Aphis gossypii Glover. Molecules 17:7533–7542. doi:10.3390/molecules17067533

    Article  PubMed  Google Scholar 

  • Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying Ricinoleic Functions as an emulsifier for azadirachtin. Carbohydr Polym 88:576–582

    Article  CAS  Google Scholar 

  • Ghazawi NA, El-Shranoubi ED, El-Shazly MM, Rahman KA (2007) Effects of azadirachtin on mortality rate and reproductive system of the grasshopper Heteracris littoralis Ramb. (Orthoptera: Acrididae). J Orthoptera Res 16(1):57–65

    Article  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-Liss, Hoboken

    Book  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    Article  CAS  Google Scholar 

  • Grdiša M, Babić S, Periša M, Carović‐Stanko K, Kolak I, Liber Z, Satovic Z (2013) Chemical diversity of the natural populations of Dalmatian Pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.) in Croatia. Chem Biodivers 10(3):460–472

    Article  PubMed  Google Scholar 

  • Guo YR, Liu SH, Gui WJ, Zhu GN (2009) Gold immune chromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem 389:32–39

    Article  CAS  PubMed  Google Scholar 

  • Hallberg K (2010) Towards a responsible research in nanoscience and nanotechnol. Pasi Nano-Bio 1–47

    Google Scholar 

  • Harper S (2010) New approaches needed to gauge safety of nanotech-based pesticides, Researchers Urge. Published in Phys Chem 4(33):2010–2012

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Koh L, Huang Y, Sim KY (1996) The oil of garlic, Allium sativum L. (Amaryllidaceae), as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biol Technol 9:41–48

    Article  CAS  Google Scholar 

  • Hori M (1996) Settling inhibition and insecticidal activity of garlic and onion oils against Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl Entomol Zool 31:605–612

    CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  PubMed  Google Scholar 

  • Ikeura H (2014) Use of plant volatile for plant pathogens and pests management. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, India, pp 181–192

    Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu AK, Santhosh kumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats, Inhal. Toxicology 19:857–887

    CAS  Google Scholar 

  • Jo YK (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    Article  CAS  Google Scholar 

  • Joseph T, Morrison M (2006). Nanotechnology in agriculture and food a nanoforum report. www.nanoforum.org

  • Kabir L, Sang-Woo Kim, Jin Hee Jung, Yun Seok Kim, Kyoung Su Kim, Youn Su Lee (2010) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Microbiolgy 39(1):26–32

    Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29:191–207

    Article  CAS  PubMed  Google Scholar 

  • Kaushik A, Solanki PR, Ansarib AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. J Biochem Eng 46:132–140

    Article  CAS  Google Scholar 

  • Khan M, Hossain MA, Islam MS (2007) Effects of neem leaf dust and a commercial formulation of a neem compound on the longevity, fecundity and ovarian development of the melon fly, Bactrocera cucurbitae (Coquillett) and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Pak J Biol Sci 10(20):3656–3661

    Article  PubMed  Google Scholar 

  • Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  • Kim TH, Jiang HL, Jere D, Parka IK, Cho MH, Nah JW (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32:726–753

    Article  CAS  Google Scholar 

  • Kim SW, Jin Hee Jung, Kabir Lamsal, Yun Seok Kim, Ji Seon Min, Youn Su Lee (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58

    Google Scholar 

  • Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (1999) Application of sodium alginate beads crosslinked with glutaraldehyde for controlled release of pesticide. Polymers News 2:285–286

    Google Scholar 

  • Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):E10–E18

    Article  PubMed Central  Google Scholar 

  • Lao SB, Zhang ZX, Xu HH, Jiang GB (2010) Novel amphiphilic chitosan derivatives: synthesis, and an increasingly regulated world. Annu Rev Entomol 51:45–46

    Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immune-assay for the rapid detection of dichloro-diphenyl-trichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu Y, Tong Z, Prudhomme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manage Sci 64:808–812

    Article  CAS  Google Scholar 

  • Lu C, Adamkiewicz G, Attfield KR, Kapp M, Spengler JD, Tao L, Xie SH (2013) Household pesticide contamination from indoor pest control applications in urban low-income public housing dwellings: a community-based participatory research. Environ Sci Technol 47(4):2018–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marek JK, Magdalena K, Anna G (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253

    Article  Google Scholar 

  • Margulis-Goshen K, Magdassi S (2013) Nanotechnology: an advanced approach to the development of potent insecticides. In: Advanced technologies for managing insect pests. Springer, Dordrecht, pp 295–314

    Chapter  Google Scholar 

  • Misra AN, Misral M, Singh R (2013) Nanotechnology in agriculture and food industry. Int J Pure Appl Sci Technol 16(2):1–9

    CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Mugisha-Kamatenesi M, Deng AL, Ogendo JO, Omolo EO, Mihale MJ, Otim M, Buyungo JP, Bett PK (2008) Indigenous knowledge of field insect pests and their management around lake Victoria basin in Uganda. Afr J Environ Sci Technol 2(8):342–348

    Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Agric Food Chem 7(50):2942–2947

    CAS  Google Scholar 

  • Park H, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Paula HCB (2011) Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng C 31(2):173–178

    Article  CAS  Google Scholar 

  • Paula HCB, Rodrigues MLL, Ribeiro WLC, Stadler AS, Paula RCM, Abreu FOMS (2012) Protective effect of cashew gum nanoparticles on natural Larvicide from Moringa oleifera seeds. J Appl Polym Sci 124:1778–1784

    Article  CAS  Google Scholar 

  • Popat A, Liu J, Hu Q, Kennedy M, Peters B, Lu GQM, Qiao SZ (2012) Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 4(3):970–975

    Article  CAS  PubMed  Google Scholar 

  • Prasann BM (2007) Nanotechnology in agriculture. ICAR National Fellow, Division of Genetics, IARI, New Delhi

    Google Scholar 

  • Prota N, Bouwmeester HJ, Jongsma MA (2013) Comparative antifeedant activities of polygodial and pyrethrins against whiteflies (Bemisia tabaci) and aphids (Myzus persicae). Pest Manage Sci 70(4):682–688

    Article  Google Scholar 

  • Psota V, Ouředníčková J, Falta V (2010) Control of Hoplocampa testudinea using the extract from Quassia amara in organic apple growing. Hort Sci (Prague) 3:139–144

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica 118:196–203

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan M, Luckarift HR, Sarsenova A, Wild JR, Ramanculov ER, Olsen EV (2009) Lysozyme-mediated formation of protein–silica nano-composites for biosensing applications. Colloids Surf B Biointerfaces 73:58–64

    Article  CAS  PubMed  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    Article  CAS  PubMed  Google Scholar 

  • Robinson DKR, Salejova-Zadrazilova G (2010) Nanotechnologies for nutrient and biocide delivery in agricultural production. Working paper version

    Google Scholar 

  • Rouhani M, Amin Samih M, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean JAR 72(4):590–594

    Google Scholar 

  • Sabbour MM, Alipour HR, Abbasi S, Ghavidel S, Farahani HF, Sabaghi M, Rahman MK (2012) Entomotoxicity assay of two Nanoparticle Materials 1-(Al2O3 and TiO2) Against Sitophilus oryzae Under Laboratory and Store Conditions in Egypt. JNAS Journal-2012-1-4/103-108

    Google Scholar 

  • Sahayaraj K (1998) Antifeedant effect of some plant extracts on the Asian armyworm, Spodoptera litura (Fabricius). Curr Sci 74:523–525

    Google Scholar 

  • Sandoval-Mojica AF, Capinera JL (2011) Antifeedant effect of commercial chemicals and plant extracts against Schistocerca americana (Orthoptera: Acrididae) and Diaprepes abbreviatus (Coleoptera: Curculionidae). Pest Manag Sci 67(7):860–868

    Article  CAS  PubMed  Google Scholar 

  • Satta A, Floris I, Caboni P, Cabras P, Eguaras M, Velis G (2008) New experimental data on use of rotenone as an acaricide for control of Varroa destructor in honey bee colonies. J Econ Entomol 101(4):1075–1080

    Article  CAS  PubMed  Google Scholar 

  • Schmutterer H (1988) Potential of azadirachtin-containing pesticides for integrated pest control in developing and industrialized countries. J Insect Physiol 34(7):713–719

    Article  CAS  Google Scholar 

  • Scott NR (2007) Nanotechnology opportunities in agriculture and food systems. Biological and Environmental Engineering, Cornell University NSF Nanoscale Science & Engineering Grantees conference, Arlington, VA, 5 December 2007

    Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and Agri food systems. Int J Sociol Food Agric 15(2):1–23

    Google Scholar 

  • Silva MA, Bezerra-Silva GCD, Vendramim JD, Mastrangelo T (2013) Sublethal effect of neem extract on mediterranean fruit fly adults. Rev Bra de Fruti 35(1):93–101

    Article  Google Scholar 

  • Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manage Sci 66:577–579. doi:10.1002/ps.1915

    CAS  Google Scholar 

  • Subramanyam B, Roesli R (2000) Inert dusts. In: Alternatives to pesticides in stored-product IPM. Springer US, Boston, pp 321–380

    Chapter  Google Scholar 

  • Teodoro S, Micaela B, David KW (2010) Novel use of nano-structured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Google Scholar 

  • Ulrichs C, Krause F, Rocksch T, Goswami A, Mewis I (2006) Electrostatic application of inert silica dust based insecticides onto plant surfaces. Comm Agric Appl Bio Sci 71:171–178

    CAS  Google Scholar 

  • Viñuela E, Medina MP, Schneider MI, González M, Budia F, Adan A, Del EStal P (2001) Comparison of side effect of spinosad, tebufenozide and azadirachtin on the predators Chrysoperla cornea and Podisus maculiventris and the parasitoids Opius concolor Hyposoter didymator under laboratory conditions. IOBC/WPRS Bull 24:25–34

    Google Scholar 

  • Vinutha JS, Bhagat D, Bakthavatsalam N (2013) Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Indus Res 1(10):606–608

    Google Scholar 

  • Wang YA, Li JJ, Chen HY, Peng XG (2002) Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc 124:2293–2298

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang J, Choi D, Tang Z, Wu H, Lin Y (2009) EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosens Bioelectron 24:2377–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani AH, Amin M, Shahnaz M, Shah MA (2012) Antimycotic activity of nanoparticles of MgO, FeO and ZnO on some pathogenic fungi. Int J Manuf Mater Mech Eng 2(4):59–70

    Google Scholar 

  • Yang FL, Li XG, Zhu Z, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against T. castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Zhu F, Lei CL (2010) Garlic essential oil and its major component as fumigants for controlling Tribolium castaneum (Herbst) in chambers filled with stored grain. J Pest Sci 83(3):311–317

    Article  Google Scholar 

  • Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693

    Article  PubMed  Google Scholar 

  • Zhao NN, Zhang H, Zhang XC, Luan XB, Zhou C, Liu QZ, Shi WP, Liu Z (2013) Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against over wintering Cacopsylla chinensis (Hemiptera: Psyllidae). J Econ Entomol 106(3):1349–1354

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sahayaraj Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Sahayaraj, K. (2014). Nanotechnology and Plant Biopesticides: An Overview. In: Singh, D. (eds) Advances in Plant Biopesticides. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2006-0_14

Download citation

Publish with us

Policies and ethics