Skip to main content

Pollen–Pistil Interaction

  • Chapter
  • First Online:
Reproductive Ecology of Flowering Plants: A Manual
  • 1672 Accesses

Abstract

Pollen–pistil interaction is unique to flowering plants. This is one of the critical postpollination phases that determine reproductive success. Following conspecific compatible pollination, pollen grains germinate on the receptive stigma and the resulting pollen tubes grow through the tissues of the stigma and style and enter the ovules where they deliver the sperm cells for fertilization. Pollen–pistil interaction involves a series of sequential events from pollination until the pollen tube enters the embryo sac. A break at any level in these sequential events results in the failure of fertilization. There is a continuous dialogue between the pollen grain and later the pollen tube and the tissues of the pistil. Successful completion of pollen–pistil interaction is a prerequisite for fertilization and subsequent fruit and seed development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armbruster WS, Debevec EM, Willson MF (2002) Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. J Evol Biol 15:657–672

    Article  Google Scholar 

  • Chapman LA, Goring DR (2010) Pollen-pistil interaction regulating successful fertilization in the Brassicaceae. J Exp Bot 61:1987–1999

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Boavida LC, Aggarwal M et al (2010) The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. J Exp Bot 61:1907–1915

    Article  CAS  PubMed  Google Scholar 

  • Davis LE, Stephenson AS, Winsor JA (1987) Pollen competition improves performance and reproductive output of the common Zucchini squash under field conditions. J Am Soc Hortic Sci 112:712–716

    Google Scholar 

  • Dickinson HG (1995) Dry stigma, water and self-incompatibility in Brassica. Sex Plant Reprod 8:1–10

    Article  Google Scholar 

  • Doughty J, Hedderson F, McCubbin A, Dickinson HG (1993) Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic S-(self-incompatibility) locus-specific glycoproteins. Proc Natl Acad Sci USA 90:467–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1986) Pollen tube chemotropism: fact or delusion? In: Crest M, Dallai R (eds) Biology of reproduction and cell motility in plants and animals. University of Siena, Siena

    Google Scholar 

  • Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26

    Article  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N et al (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  CAS  PubMed  Google Scholar 

  • Hulskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawashima T, Berger F (2011) Green love talks; cell–cell communication during double fertilization in flowering plants. AoB Plants 2011 plr015. doi: 10.1093/aobpla/plr015

  • Lankinen A, Madjidian JA (2011) Enhancing pollen competition by delaying stigma receptivity: pollen deposition schedules affect siring ability, paternal diversity, and seed production in Collinsia heterophylla (Plantaginaceae). Am J Bot 98:1191–1200

    Article  PubMed  Google Scholar 

  • Li H-J, Xue Y, Jia D-J et al (2011) POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 22:3288–3302

    Article  Google Scholar 

  • Linskens HF, Esser K (1957) Uber einespezifische Anfarbung der Pollenschlauche in Griffel und die Zahl der Kallosepfropfen nach Selbstung und Fremdung. Naturwissenschaften 44:16

    Article  Google Scholar 

  • Lord EM (2001) Adhesion molecules in lily pollination. Sex Plant Reprod 14:57–62

    Article  CAS  Google Scholar 

  • Lord EM (2003) Adhesion and guidance in compatible pollination. J Exp Bot 54:47–54

    Article  CAS  PubMed  Google Scholar 

  • Martin FW (1959) Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol 34:125–128

    CAS  PubMed  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of calchone synthase mutants define a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:1713–1717

    Google Scholar 

  • Mulcahy DL (1979) Rise of the angiosperms: a genecological factor. Science 206:20–23

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy DL (1984) Manipulation of gametophytic populations. In: Lange W, Zevan AC, Hogenboom C (eds) Efficiency in plant breeding. PUDOC, Wageningen

    Google Scholar 

  • Mulcahy DL, Mulcahy GB (1983) Gametophytic self-incompatibility reexamined. Science 220:1247–1251

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy GB, Mulcahy DL (1985) Ovarian influence on pollen tube growth as indicated by semi-vivo technique. Am J Bot 72:1078–1080

    Article  Google Scholar 

  • Mulcahy DL, Mulcahy GB, Popp R et al (1988) Pollen selection for stress tolerance or the advantage of selection before pollination. In: Cresti M, Gori P, Pacini E (eds) Sexual reproduction in higher plants. Springer, Berlin

    Google Scholar 

  • Niimi Y (1982) Studies on the self-incompatibility of Petunia hybrida in excised-style culture. An attempt at improving a technique in excised-style culture. Euphytica 31:787–793

    Article  Google Scholar 

  • Okuda S, Tsutsui H, Shiima K et al (2009) Defensin-like polypeptides LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    Article  CAS  PubMed  Google Scholar 

  • Ottaviano E, Sari-Gorla M, Mulcahy DL (1980) Pollen tube growth rates in Zea mays: implications for genetic improvements in crops. Science 210:437–438

    Article  CAS  PubMed  Google Scholar 

  • Polanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. doi:10.1186/1471-2229-6-7

    Article  Google Scholar 

  • Preuss D, Lemieux B, Yen G, Davis RW (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–985

    Article  CAS  PubMed  Google Scholar 

  • Punwani JA, Drews GN (2008) Development and function of the synergid cell. Sex Plant Reprod 21:17–26

    Article  Google Scholar 

  • Russell SD (1992) Double fertilization. Int Rev Cytol 140:357–388

    Article  Google Scholar 

  • Russell SD, Dumas C (eds) (1992) Sexual reproduction in higher plants. Int Rev Cytol 140. Academic Press Inc, San Diego

    Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Science Publishers Inc., Enfield/Plymouth

    Google Scholar 

  • Shivanna KR, Johri BM (1985) The angiosperm pollen: structure and function. Wiley Eastern, New Delhi

    Google Scholar 

  • Shivanna KR, Rangaswamy NS (1992) Pollen biology: a laboratory manual. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Shivanna KR, Xu H, Taylor P, Knox RB (1988) Isolation of sperms from pollen tubes of flowering plants during fertilization. Plant Physiol 87:647–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shivanna KR, Linskens HF, Cresti M (1991) Pollen viability and pollen vigour. Theor Appl Genet 81:38–42

    Article  CAS  PubMed  Google Scholar 

  • Snow AA, Timothy PS (1991) Pollen vigour and the potential of sexual selection in plants. Nature 352:796–797

    Article  Google Scholar 

  • Suen DF, Huang HC (2007) Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction. J Biol Chem 282:625–636

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wu H-M, Cheung AY (1993) Development and pollination regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Plant Cell 5:1639–1650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitehouse HLK (1950) Multiple allelomorph incompatibility of pollen and style in the evolution of angiosperms. Ann Bot 1:199–216

    Google Scholar 

  • Wolters-Arts M, Lush WM, Marium C (1998) Lipids are required for directional pollen tube growth. Nature 392:818–821

    Article  CAS  PubMed  Google Scholar 

  • Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–5440

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shivanna, K.R., Tandon, R. (2014). Pollen–Pistil Interaction. In: Reproductive Ecology of Flowering Plants: A Manual. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2003-9_8

Download citation

Publish with us

Policies and ethics