Skip to main content

Abstract

Pollination is one of the most critical events in sexual reproduction of flowering plants. Pollination is the basis of gene flow and genetic recombination. Studies on pollination ecology were prevalent even before Darwin; they became intense after Darwin formulated the concept of co-evolution between flowers and pollinators. The number of publications on pollination perhaps exceeds those in any other area of reproductive ecology. Pollination is simply the transfer of pollen grains from an anther to the stigma. Pollination ecology is the study of pollen transfer through understanding of interactions between plants and pollinators in relation to the prevailing habitat. Except in some apomictic species which do not depend on fusion of the second male gamete with polar nuclei for endosperm development (pseudogamy), effective pollination is a prerequisite for successful seed development. A comprehensive understanding of pollination ecology of a species needs a thorough familiarity with the phenology, floral morphology and sexuality of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Google Scholar 

  • Adler LS, Irwin RE (2005) Ecological costs and benefits of defenses in nectar. Ecology 86:2968–2978

    Google Scholar 

  • Ananthakrishnan TN (1993) The role of thrips in pollination. Curr Sci 65:262–264

    Google Scholar 

  • Armbruster WS (2012) Evolution and ecological implications of “specialized” pollinator rewards. In: Patiny S (ed) Evolution of plant-pollinator relationships, vol 81, The systematic association special. Cambridge University Press, New York

    Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF et al (2003) Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc R Soc B 270:517–522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker HG (1977) Non-sugar chemical constituents of nectar. Apidologie 8:349–356

    Google Scholar 

  • Baker HG, Baker I (1983) Floral nectar sugar constituents in relation to pollinatior type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold Jones, New York

    Google Scholar 

  • Beattie AJ (1985) The evolutionary ecology of ant-plant mutualisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Beattie AJ, Turnbull C, Knox RB, Williams EG (1984) Ant inhibition of pollen function: a possible reason why ant pollination is rare. Am J Bot 71:421–426

    Google Scholar 

  • Bernklau EJ (2012) Chemical mimicry in pollination. http://www.interlibrary.narod.ru/GenCat/GenCat.Scient.Dep/GenCatEcology/400000001/400000001.htm. Accessed 12 Feb 2012

  • Bronstein JL, Alarcon R, Geber M (2006) Tansley review: evolution of insect/plant mutualisms. New Phytol 172:412–428

    PubMed  Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Google Scholar 

  • Cox PA (1988) Hydrophilous pollination. Annu Rev Ecol Syst 19:261–280

    Google Scholar 

  • Cox PA (1993) Water-pollinated plants. Sci Am 269:68–74

    Google Scholar 

  • Cox PA, Elmquist T, Tomlinson PB (1990) Submarine pollination and reproductive morphology in Syringodium filiforme (Cymodoceaceae). Biotropica 22:259–265

    Google Scholar 

  • Dafni A (1984) Mimicry and deception in pollination. Annu Rev Ecol Syst 15:259–278

    Google Scholar 

  • Dafni A, Dukas R (1986) Insect and wind pollination in Urginea maritima (Liliaceae). Plant Syst Evol 154:1–10

    Google Scholar 

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Enviroquest, Cambridge

    Google Scholar 

  • Dafni A, Marom-Levy T, Jurgens A et al (2012) Ambophily and “super generalism” in Ceratonia siliqua (Fabaceae) pollination. In: Patiny S (ed) Evolution of plant-pollinator relationships, vol 81, The systematic association special. Cambridge University Press, New York

    Google Scholar 

  • Dar S, Arizmendi MDC, Valiente-Banuet A (2006) Diurnal and nocturnal pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico. Ann Bot 97:423–427

    PubMed Central  PubMed  Google Scholar 

  • de la Bandera MC, Traveset A (2006) Breeding system and spatial variation in the pollination biology of the heterocarpic Thymelaea velutina (Thymelaeaceae). Plant Syst Evol 257:9–23

    Google Scholar 

  • de Wall C, Anderson B, Barrett CH (2012) The natural history of pollination and mating in bird-pollinated Babiana (Iridaceae). Ann Bot 109:667–679

    Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154

    CAS  Google Scholar 

  • Dobson HEM (1988) Survey of pollen and pollenkitt lipids – chemical cues to flower visitors? Am J Bot 75:170–182

    CAS  Google Scholar 

  • Dobson HEM, Bergstrom G (1996) Pollen-advertisement: chemical contrasts between whole flower and pollen odors. Am J Bot 83:877–885

    CAS  Google Scholar 

  • Dobson HEM, Bergstrom G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222:63–87

    CAS  Google Scholar 

  • Dressler RL (1982) Biology of the orchid bee (Euglossini). Annu Rev Ecol Syst 13:373–394

    Google Scholar 

  • Ducker SC, Knox RB (1976) Submarine pollination in sea grasses. Nature 263:705–706

    Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular aspects of floral scents. Plant Physiol 122:627–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eckert CG, Samis KE, Dart S (2006) Reproductive assurance and the evolution of uniparental reproduction in flowering plants. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flower. Oxford University Press, New York

    Google Scholar 

  • Ellis AG, Johnson SD (2010) Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the Orchidaceae. Am Nat 176:E143–E151

    PubMed  Google Scholar 

  • Endress SK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, New York

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P et al (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Syst 35:375–403

    Google Scholar 

  • Freidman S, Izhaki I, Gerchman Y, Halpern M (2012) Bacterial communities in floral nectar. Environ Microbiol Rep 4:97–104

    Google Scholar 

  • Galizia CG, Kunze J, Gumbert A et al (2005) Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav Ecol 16:159–168

    Google Scholar 

  • Garcia-Fayos P, Goldarazena A (2008) The role of thrips in pollination of Arctstaphyllos uva-ursi. Int J Plant Sci 169:776–781

    Google Scholar 

  • Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity, and conservation. Oxford University Press, Oxford/New York

    Google Scholar 

  • Gibson AC (2001) Bats and their flowers. Newsletter, vol 4, Fall, Mildred E. Mathias Botanical Gardens, University of California, Los Angeles. http://www.botgard.ucla.edu/html/MEMBGNewsletter/Volume4number4/Batsandtheirflowers.html

  • Gomez JMR, Zamora R, Hodar JA, Garcia D (1996) Experimental study of pollination by ants in Mediterranean high mountain and arid habitats. Oecologia 105:236–242

    Google Scholar 

  • Gori DF (1983) Post-pollination phenomena and adaptive floral changes. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold Co, Inc., New York

    Google Scholar 

  • Hansen DM, Olesen JM, Mione T et al (2007) Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biol Rev 82:83–111

    PubMed  Google Scholar 

  • Hansen DM, van der Niet T, Johnson SD (2012) Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc R Soc B 279:634–639

    PubMed Central  PubMed  Google Scholar 

  • Hargreaves AL, Harder LD, Johnson SD (2009) Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol Rev 84:259–276

    PubMed  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological function. Trends Plant Sci 16:191–200

    CAS  PubMed  Google Scholar 

  • Herrera CM, de Vega C, Canto A, Pozo MI (2009) Yeasts in floral nectar: a quantitative survey. Ann Bot 103:1415–1423

    PubMed Central  PubMed  Google Scholar 

  • Huber FK, Kaiser R, Sauter W, Schiestl FP (2005) Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 142:564–575

    PubMed  Google Scholar 

  • Irwin RE, Adler LS, Brody AK (2004) The dual role of floral traits: pollinator attraction and plant defence. Ecology 85:1503–1511

    Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:190–193

    Google Scholar 

  • Johnson SD, Anna L, Hargreaves AL, Brown M (2006) Dark bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology 87:2709–2716

    PubMed  Google Scholar 

  • Junker RR, Bluthgen N (2010) Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot 105:777–782

    PubMed Central  PubMed  Google Scholar 

  • Kalisz S, Vogler DW (2003) Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84:2928–2942

    Google Scholar 

  • Karrenberg S, Kollman J, Edwards PJ (2002) Pollen vectors and inflorescence morphology in four species of Salix. Plant Syst Evol 235:181–188

    Google Scholar 

  • Kaul V, Koul AK (2009) Sex expression and breeding strategy in Commelina benghalensis L. J Biosci 34:977–990

    PubMed  Google Scholar 

  • Kearns A, Inouye DW (1993) Techniques for pollination biologists. University Press Colorado, Niwot

    Google Scholar 

  • Kessler D, Baldwin IT (2006) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuate. Plant J 49:840–854

    Google Scholar 

  • Kevan PG (2005) Advertisement in flowers. In: Dafni A, Kevan PG, Husband BC (eds) Practical pollination biology. Enviroquest, Cambridge

    Google Scholar 

  • Khadari B, Gibernau M, Anstett MC et al (1995) When figs wait for pollinators: the length of fig receptivity. Am J Bot 82:992–999

    Google Scholar 

  • Knight TM, Steets JA, Vamosi JC et al (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Google Scholar 

  • Knudsen J, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Google Scholar 

  • Kress WJ (1993) Coevolution of plants and animals: pollination of flowers by primates in Madagascar. Curr Sci 65:253–257

    Google Scholar 

  • Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Google Scholar 

  • Leonard AS, Papaj DR (2011) ‘X’ marks the spot: The possible benefits of nectar guides to bees and plants. Funct Ecol 25:1–9

    Google Scholar 

  • Leonhardt SD, Bluthgen N (2012) The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie 43:449–464

    Google Scholar 

  • Lord EM (1981) Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot Rev 47:421–449

    Google Scholar 

  • Machado CA, Robbins N, Gilbert MTP, Herre EA (2005) Critical review of host specificity and its coevolutionary implications in the fig-fig-wasp mutualism. Proc Natl Acad Sci U S A 102:6558–6565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathur G, Mohan Ram HY (1978) Significance of petal colour in thrips-pollinated Lantana camara L. Ann Bot 42:1473–1478

    Google Scholar 

  • McConchie CA (1983) The diversity of hydrophilous pollination in monocotyledons. In: Williams EG, Knox RB, Gilbert JH, Bernhardt P (eds) Pollination’82. School of Botany, University of Melbourne, Parkville

    Google Scholar 

  • McKenna MA, Thomson JD (1988) A technique for sampling and measuring small amounts of floral nectar. Ecology 69:1306–1307

    Google Scholar 

  • Mitchell RJ, Irwin RE, Flanagan RJ, Karron JD (2009) Ecology and evolution of plant-pollinator interactions. Ann Bot 103:1355–1363

    PubMed Central  PubMed  Google Scholar 

  • Muchhala N, Caiza A, Vizeute JC, Thomson JD (2009) A generalized pollination system in the tropics: bats, birds and Aphelandra acanthus. Ann Bot 103:1481–1487

    PubMed Central  PubMed  Google Scholar 

  • Müller A, Kuhlmann M (2008) Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae): the Asteraceae paradox. Biol J Linn Soc 95:719–733

    Google Scholar 

  • Murugan R, Shivanna KR, Rao RR (2006) Pollination biology of Aristolochia tagala, a rare species of medicinal importance. Curr Sci 91:795–798

    Google Scholar 

  • Nagamitsu T, Inoue T (1997) Cockroach pollination and breeding system of Uvaria elmeri (Annonaceae) in a lowland mixed-Dipterocarp forest in Sarawak. Am J Bot 84:208–213

    CAS  PubMed  Google Scholar 

  • Nicolson SW, Thornburg RW (2007) Nectar chemistry. In: Nicolson S et al (eds) Nectaries and nectar. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Olesen JM, Valido A (2003) Lizards as pollinators and seed dispersers: an Island phenomenon. Trends Ecol Evol 18:177–181

    Google Scholar 

  • Ollerton J (2006) “Biological barter”: patterns of specialization compared across different mutualisms. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Google Scholar 

  • Omura H, Keiichi HK, Hayashi N (2000) Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly, Pieris rapae. J Chem Ecol 26:655–666

    CAS  Google Scholar 

  • Ortega-Olivencia A, Rodriguez-Riano T, Perez-Bote JL et al (2012) Insects, birds and lizards as pollinators of the largest-flowered Scrophularia of Europe and Macaronesia. Ann Bot 109:153–167

    PubMed Central  PubMed  Google Scholar 

  • Pellmyr O (2002) Pollination by animals. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell Science Ltd., Malden

    Google Scholar 

  • Phillips RD, Scaccabarozzi D, Retter BA et al (2014) Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). Ann Bot 113:629–641

    PubMed  Google Scholar 

  • Pimentel de Carvalho AC, Message D (2004) A scientific note on the toxic pollen of Stryphnodendron polyphyllum (Fabaceae, Mimosoideae) which causes sacbrood-like symptoms. Apidologie 35:89–90

    Google Scholar 

  • Pleasants JM (1983) Structure of plant and pollinator communities. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York

    Google Scholar 

  • Praz CJ, Müller A, Dorn S (2008) Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. Ecology 89:795–804

    PubMed  Google Scholar 

  • Proffit M, Schatz B, Bessiere J-M et al (2008) Signaling receptivity: comparison of the emission of volatile compounds by figs of Ficus hispida before, during and after the phase of receptivity to pollinators. Symbiosis 45:15–24

    CAS  Google Scholar 

  • Proffit M, Chen C, Soler C et al (2009) Can chemical signals responsible for mutualistic partner encounter promote the specific exploitation of nursery pollination mutualisms? The case of figs and fig wasps. Entomol Exp et Appl 131:46–57

    CAS  Google Scholar 

  • Raguso RA (2004) Why are some floral nectars scented? Ecology 85:1486–1494

    Google Scholar 

  • Rasmont P, Regali A, Ings TC et al (2005) Analysis of pollen and nectar of Arbutus unedo as a food source for Bombus terrestris (Hymenoptera: Apidae). J Ecol Entomol 98:656–663

    CAS  Google Scholar 

  • Renner SS (2006) Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions; from specialization to generalization. University of Chicago Press, Chicago

    Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Google Scholar 

  • Richards AJ (1986) Plant breeding systems. Allen and Unwin, London

    Google Scholar 

  • Riffell J (2011) The neuroecology of a pollinator’s buffet: olfactory preferences and learning in insect pollinators. Integr Comp Biol 51:781–793

    PubMed  Google Scholar 

  • Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209

    CAS  Google Scholar 

  • Sacchi CF, Price PW (1988) Pollination of the arroyo willow, Salix lasiolepis: role of insects and wind. Am J Bot 75:1387–1393

    Google Scholar 

  • Salzmann CC, Nardella AM, Cozzolino S, Schiestl P (2007) Variability in floral scent in rewarding and deceptive orchids: the signature of pollinator-imposed selection? Ann Bot 100:757–765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarma K, Tandon R, Shivanna KR, Mohan Ram HY (2007) Snail-pollination in Volvulopsis nummularium. Curr Sci 93:826–831

    Google Scholar 

  • Schemske DW, Horwitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521

    CAS  PubMed  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Erdtmann D, Francke W (1997) Variation of floral scent emission and postpollination changes in individual flowers of Ophrys sphegodes subsp. sphegodes. J Chem Ecol 23:2881–289

    CAS  Google Scholar 

  • Schiestl FP, Peakall R, Mant JG, Ibarra F, Schulz C, Franke S, Francke W (2003) The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–438

    Google Scholar 

  • Schmidt JO (1982) Pollen-foraging preferences of honeybees. SouthWest Entomol 7:255–259

    Google Scholar 

  • Schmidt JO, Buchmann SL (1992) Other products of the hive. In: Graham JM (ed) The hive and the honey bee. Dadant & Sons, Hamilton

    Google Scholar 

  • Sedivy C, Praz CJ, Müller A et al (2008) Patterns of host-plant choice in bees of the genus Chelostoma: the constraint hypothesis of host-range evolution in bees. Evolution 62:2487–2507

    CAS  PubMed  Google Scholar 

  • Sedivy C, Müller A, Dorn S (2011) Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Funct Ecol 25:718–725

    Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Science Publishers, Inc., Enfield/Plymouth

    Google Scholar 

  • Shivanna KR (2014) Biotic pollination: how plants achieve conflicting demands of attraction and restriction of potential pollinators. In: Ramawat KG, Merillon J-M, Shivanna KR (eds) Reproductive biology of plants. CRC Press, Boca Raton

    Google Scholar 

  • Sinu PA, Shivanna KR (2007) Pollination biology of large cardamom (Amomum subulatum): an important cash crop of Eastern Himalayas. Curr Sci 93:548–552

    Google Scholar 

  • Sinu PA, Kuriakose G, Shivanna KR (2011) Is the bumblebee (Bombus haemorrhoidalis) the only pollinator of large cardamom in central Himalayas, India? Apidologie 42:690–695

    Google Scholar 

  • Spears EE Jr (1983) A direct measure of pollinator effectiveness. Oecologia 57:196–199

    Google Scholar 

  • Stelleman P (1978) The possible role of insects visits in the pollination of reputedly anemophilous plants, exemplified by Plantago lanceolata, and syrphid flies. In: Richard AJ (ed) The pollination of flowers by insects. Academic, London

    Google Scholar 

  • Stephenson AG (1981) Toxic nectar deters nectar thieves of Catalpa speciosa. Am Midland Nat 105:381–383

    Google Scholar 

  • Subramanya S, Radhamani TR (1993) Pollination by birds and bats. Curr Sci 65:201–209

    Google Scholar 

  • Tamura S, Kubo G (2000) Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis. Plant Ecol 147:185–192

    Google Scholar 

  • Tan K-H (2006) Fruit fly pests as pollinators of wild orchids. In: Proceedings of the 7th international symposium on fruit flies of economic importance: from basic to applied knowledge, Salvador, Brazil

    Google Scholar 

  • Tandon R, Shivanna KR, Mohan Ram HY (2003) Reproductive biology of Butea monosperma (Fabaceae). Ann Bot 92:715–723

    PubMed  Google Scholar 

  • Thien LB, Bernhardt P, Devall MS et al (2009) Pollination biology of basal angiosperms (ANITA grade). Am J Bot 96:166–182

    PubMed  Google Scholar 

  • Trujillo CG, Sersic AN (2006) Floral biology of Aristolochia argentina (Aristolochiaceae). Flora 201:374–382

    Google Scholar 

  • Turner IM (2001) The ecology of seeds in tropical rain forests. Cambridge University Press, Cambridge

    Google Scholar 

  • Vereecken NJ, Wilson CA, Hotling S et al (2012) Pre-adaptations and the evolution of pollination by sexual deception: Cope’s rule of specialization revisited. Proc R Soc B 279:4786–4794

    PubMed Central  PubMed  Google Scholar 

  • von Helversen D, von Helversen O (1999) Acoustic guide in bat pollinated flower. Nature 398:759–760

    Google Scholar 

  • Waser NM, Ollerton J (eds) (2006) Plant-pollinator interactions; from specialization to generalization. The University of Chicago Press, Chicago

    Google Scholar 

  • Waser NM, Chittka L, Price MV (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Google Scholar 

  • Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354:227–229

    Google Scholar 

  • Wester P, Stanway R, Pauw A (2009) Mice pollination in Pagoda lily, Whiteheadia bifolia (Hyacinthaceae) – first field observations with photographic documentation of rodent pollination in South Africa. South Afr J Bot 75:713–719

    Google Scholar 

  • Wiens D (1978) Mimicry in plants. Evol Biol 11:365–403

    Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    CAS  PubMed  Google Scholar 

  • Williams NH (1983) Floral fragrances as cues in animal behavior. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York

    Google Scholar 

  • Williams NH, Dodson GH (1972) Selective attraction of male euglossine bees to orchid floral fragrance and its importance in long distance pollen flow. Evolution 26:84–95

    Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Princeton

    Google Scholar 

  • Young HJ (2002) Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am J Bot 89:433–440

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shivanna, K.R., Tandon, R. (2014). Pollination Ecology. In: Reproductive Ecology of Flowering Plants: A Manual. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2003-9_7

Download citation

Publish with us

Policies and ethics