Skip to main content

Seedling Recruitment

  • Chapter
  • First Online:
Reproductive Ecology of Flowering Plants: A Manual

Abstract

The stability of any species in its natural habitat is dependent on its optimal reproduction and recruitment of new individuals to sustain populations. Seedling recruitment is the ultimate step in a series of sequential events involved in successful reproduction of a species. Although habitat degradation, overexploitation and climate change are the proximate causes for vulnerability of the species, the ultimate driving force that pushes the species to endangered category and eventual extinction is reproductive constraint in the species induced by proximate causes. Because of these constraints, plant species are unable to produce optimal number of seeds and recruit new individuals to sustain populations. The following are the major steps involved in seedling recruitment that affect recruitment success:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JM, Terres MA, Katsuki T et al (2013) Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology. Glob Chang Biol 20:1251–1263

    Article  Google Scholar 

  • Anonymous (2002) UNEP Action for a sustainable future. Decisions from the sixth meeting of the conference of the parties to the convention on biological diversity, United Nations, The Hague, The Netherlands. http://www.biodiv.org/doc/meetings/cop/cop-06/official/cop-06-20-en.pdf

  • Anonymous (2007) Special section: pervasive consequences of hunting for tropical forests. Biotropica 39:289–392

    Article  Google Scholar 

  • Aravind NA, Ganeshaiah KN, Shaanker RU (2013) Indian monsoons shape dispersal phenology of plants. Biol Lett 9:20130675, http://dx.doi.org/10.1098/rsbl.2013.0675

    Article  CAS  PubMed  Google Scholar 

  • Augspurger CK (1983) Seed dispersal of the tropical tree, Platypodium elegans, and the escape of its seedlings from fungal pathogens. J Ecol 71:759–771

    Article  Google Scholar 

  • Bagchi R, Gallery RE, Gripenberg S et al (2014) Pathogen and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88

    Article  CAS  PubMed  Google Scholar 

  • Bawa KS, Opler PA (1975) Dioecism in tropical forest trees. Evolution 29:167–179

    Article  Google Scholar 

  • Beckman N, Muller-Landau HC (2007) Differential effects of hunting on pre-dispersal seed predation and primary and secondary seed removal of two Neotropical tree species. Biotropica 39:328–339

    Article  Google Scholar 

  • Bharali S, Khan ML (2011) Climate change and its impact on biodiversity; some management options for mitigation in Arunachal Pradesh. Curr Sci 101:855–860

    Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Broncano MJ, Riba M, Retana J (1998) Seed germination and seedling performance of two Mediterranean tree species, Holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.): a multifactor experimental approach. Plant Ecol 138:17–26

    Article  Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Article  Google Scholar 

  • Burkey TV (1994) Tropical tree species diversity: a test of the Janzen-Connell model. Oecologia 97:533–540

    Article  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Bustamante RO, Simonetti JA (2000) Seed predation and seedling recruitment in plants: the effect of the distance between parents. Plant Ecol 147:173–183

    Article  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci U S A 108:662–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark CJ (2009) Factors that determine patterns of seedling recruitment in an Afrotropical forest. PhD dissertation, University of Florida. http://etd.fcla.edu/UF/UFE0024894/clark_c.pdf

  • Clark DB, Clark DA (1989) The role of physical damage in the seedling mortality regime of a neotropical forest. Oikos 55:225–230

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defences in tropical forests. Annu Rev Ecol Sys 27:305–335

    Article  Google Scholar 

  • Combs JK, Reichard SH, Groom MJ et al (2011) Invasive competitor and native seed predators contribute to rarity of the narrow endemic Astragalus sinuatus Piper. Ecol Appl 21:2498–2509

    Article  PubMed  Google Scholar 

  • Combs JK, Lambert AM, Reichard SH (2013) Predispersal seed predation is higher in a rare species than in its widespread sympatric congeners (Astragalus, Fabaceae). Am J Bot 100:2149–2157

    Article  PubMed  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR (eds) Dynamics of populations. PUDOC, Wageningen

    Google Scholar 

  • Corlett RT (2007) Pollination or seed dispersal: which should worry about most? In: Dennis AJ, Schupp EW, Green RJ, Wescott DA (eds) Seed dispersal: theory and its application in a changing world. CAI International, Wallingford

    Google Scholar 

  • Delissio LJ, Primack RB (2003) The impact of drought on the population dynamics of canopy-tree seedlings in an aseasonal Malaysian rain forest. J Trop Ecol 19:489–500

    Article  Google Scholar 

  • Dirzo R, Miranda A (1990) Contemporary neotropical defaunation and forest structure, function and diversity: a sequel. Conserv Biol 4:444–447

    Article  Google Scholar 

  • Dunnell KL, Travers SE (2011) Shifts in the flowering phenology of the northern great plains: patterns over 100 years. Am J Bot 98:935–945

    Article  PubMed  Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Galletti M (1993) Diet of the scaly-headed parrot (Pionus maximiliani) in a semi-deciduous forest in southeastern Brazil. Biotropica 25:419–425

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity, and conservation. Oxford University Press, Oxford/New York

    Google Scholar 

  • Gross KL (1980) Colonization by Verbascum thapsus (mullein) of an old field in Michigan: experiments on the effects of vegetation. J Ecol 68:919–927

    Article  Google Scholar 

  • Hammond DS, Brown VK (1995) Seed size in woody plants in relation to disturbance, dispersal, soil type in wet neotropical forests. Ecology 76:2544–2561

    Article  Google Scholar 

  • Hanley ME, Fenner M, Whibley H, Darvill B (2004) Early plant growth: identifying the end point of the seedling phase. New Phytol 163:61–66

    Article  Google Scholar 

  • Hansen DM, Kaiser CN, Muller CB (2008) Seed dispersal and establishment of endangered plants on oceanic islands: the Janzen-Connell model, and the use of ecological analogues. PLoS One 3(5):e2111. doi:10.1371/journal.pone.0002111

    Article  PubMed Central  PubMed  Google Scholar 

  • Harms KE, Wright SJ, Calderon O, Hernandez A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495

    Article  CAS  PubMed  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London

    Google Scholar 

  • Harrison RD (2000) Repercussions of El Nino: drought causes extinction and the breakdown of mutualism in Borneo. Proc R Soc B 267:911–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hegazy AK, Eesa NM (1991) On the ecology, insect seed-predation, and conservation of a rare endemic plant species, Ebenus armitagei (Leguminosae). Conserv Biol 5:317–324

    Article  Google Scholar 

  • Hepper FN (2003) Phenological records of English garden plants in Leeds (Yorkshire) and Richmond (Surrey) from 1946 to 2002. Biodiv Conserv 12:2503–2520

    Article  Google Scholar 

  • Howe HF (1990) Seed dispersal by birds and mammals: implications for seedling demography. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants. UNESCO/The Parthenon Publishing Group, Paris/Park Ridge

    Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Sys 13:201–228

    Article  Google Scholar 

  • Hubbell SP, Foster RB, O’Brien ST et al (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492

    Article  Google Scholar 

  • Janzen DH (1974) Tropical Backwater Rivers, animals and mast fruiting by the Dipterocarpaceae. Biotropica 6:69–103

    Article  Google Scholar 

  • King DA, Davies SJ, Supardi MNN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19:445–453

    Article  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC et al (2005) Pollen limitation of plant reproduction: Pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Kolb A, Ehrlen J, Eriksson O (2007) Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect Plant Ecol Evol Syst 9:79–100

    Article  Google Scholar 

  • Kursar TA, Coley PD (2003) Convergence of defence syndromes of young leaves in tropical rain forests. Biochem Syst Ecol 31:929–949

    Article  CAS  Google Scholar 

  • Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Article  Google Scholar 

  • Leishman MR, Westoby M (1994) The role of large seed size in shaded conditions: experimental evidence. Funct Ecol 8:205–214

    Article  Google Scholar 

  • Lorimer CG, Chapman JW, Lambert WD (1994) Tall understory vegetation as a factor in the poor development of oak seedlings beneath mature stands. J Ecol 82:227–237

    Article  Google Scholar 

  • Louda SM (1982) Distribution ecology: variation in plant recruitment over a gradient in relation to seed predation. Ecol Monogr 52:25–41

    Article  Google Scholar 

  • Louda SM, Potvin MA (1995) Effect of inflorescence-feeding insects on the demography and lifetime fitness of a native plant. Ecology 76:229–245

    Article  Google Scholar 

  • Nakagawa M, Takeuchi Y, Kenta T, Nakashizuka T (2005) Predispersal seed-predation by insects vs vertebrates in six dipterocarp species in Sarawak, Malaysia. Biotropica 37:389–396

    Article  Google Scholar 

  • Nayak KG, Davidar P (2010) Pollinator limitation and the effect of breeding systems on plant reproduction in forest fragments. Acta Oecol 36:191–196

    Article  Google Scholar 

  • Nunez-Iturri G, Howe HF (2007) Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica 39:348–354

    Article  Google Scholar 

  • Obutu GC (2010) Pollination: a threatened vital biodiversity service to humans and the environment. Int J Biodiv Conserv 2:1–13

    Google Scholar 

  • Osunkoya OO, Ash JE, Hopkins MS, Graham AW (1994) Influence of seed size and seedling ecological attributes on shade-tolerance of rain forest species in Northern Queensland. J Ecol 82:149–163

    Article  Google Scholar 

  • Parmesan C (1996) Climate and species’ range. Nature 382:765–766

    Article  CAS  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Peters HA, Pauw A, Silman MR, Telborgh JW (2004) Falling palm fronds structure Amazonian rainforest sapling communities. Proc R Soc B 271:5367–5369

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Rey PJ, Alcantara JM (2000) Recruitment dynamics of a fleshy-fruited plant (Olea europaea): connecting patterns of seed dispersal to seedling establishment. J Ecol 88:622–633

    Article  Google Scholar 

  • Ruiz JE (2008) Effects of dispersal and insect herbivory on seedling recruitment of Dipteryx oleifera Benth. (Fabaceae) A tropical tree. PhD dissertation, University of Michigan. http://deepblue.lib.umich.edu/bitstream/handle/2027.42/60714/jeruiz_1.pdf;jsessionid=6D8DABA80F3C700604F5EB581469F5DE?sequence=1

  • Sinu PA (2012) Seed predation of an old-world tropical deciduous tree (Terminalia bellirica: Combretaceae) in wet habitats of the Western Ghats, India. Curr Sci 103:309–315

    Google Scholar 

  • Skoglund J (1992) The role of seed banks in vegetation dynamics and restoration of dry tropical ecosystems. J Veg Sci 3:357–360

    Article  Google Scholar 

  • Sork VL (1987) Effects of predation and light on seedling establishment in Gustavia superba. Ecology 68:1341–1350

    Article  Google Scholar 

  • Tadwalkar MD, Joglekar AM, Mhaskar M et al (2012) Dispersal modes of woody species from the northern Western Ghats, India. Trop Ecol 53:53–67

    Google Scholar 

  • Tang Q, Ohsawa M (2002) Coexistence mechanisms of evergreen, deciduous and coniferous trees in a mid-montane mixed forest on Mt. Emei, Sichuan, China. Plant Ecol 161:215–230

    Article  Google Scholar 

  • Taylor KM, Aarssen LY (1989) Neighbour effects in mast year seedlings of Acer saccharum. Am J Bot 76:546–554

    Article  Google Scholar 

  • Teegalapally K, Hiremath AJ, Jathanna D (2010) Patterns of seed rain and seedling regeneration in abandoned agricultural clearings in a seasonally dry tropical forest in India. J Trop Ecol 26:25–33

    Article  Google Scholar 

  • Toy RJ, Marshall AG, Pong TY (1992) Fruiting phenology and the survival of insect fruit predators: a case-study from the South-East Asian Dipterocarpaceae. Philos Trans R Soc Lond Ser B 335:417–423

    Article  Google Scholar 

  • Tsvuura Z, Griffiths ME, Gunton RM, Lawes MJ (2011) Predator satiation and recruitment in a mast fruiting monocarpic forest herb. Ann Bot 107:379–387

    Article  PubMed Central  PubMed  Google Scholar 

  • Turner IM (1990) Tree seedling growth and survival in a Malaysian rain forest. Biotropica 22:146–154

    Article  Google Scholar 

  • Turner IM (2001) The ecology of seeds in tropical rain forests. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tylianakis JM (2013) The global plight of pollinators. Science 339:1532–1533

    Article  CAS  PubMed  Google Scholar 

  • van der Putten WH (2012) Climate change, aboveground-belowground interactions, and species’ range shifts. Annu Rev Ecol Evol Syst 43:365–383

    Article  Google Scholar 

  • van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Lond B 365:2025–2034

    Article  Google Scholar 

  • Wang BC, Leong MT, Smith TB, Sork VL (2007) Hunting of mammals reduces seed removal and dispersal from the Afrotropical tree, Antrocaryon klaineanum (Anacardiaceae). Biotropica 39:340–347

    Article  Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  CAS  PubMed  Google Scholar 

  • Wright JS, Stoner KE, Beclman N et al (2007) The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39:289–291

    Article  Google Scholar 

  • Xiao Z, Zhang Z, Wang Y (2005) The effects of seed abundance on seed predation and dispersal by rodents in Castanopsis fargesii (Fagaceae). Plant Ecol 177:249–257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shivanna, K.R., Tandon, R. (2014). Seedling Recruitment. In: Reproductive Ecology of Flowering Plants: A Manual. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2003-9_12

Download citation

Publish with us

Policies and ethics