Skip to main content

Lasers in Materials Processing

  • Conference paper
  • First Online:
Laser Physics and Technology

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 160))

Abstract

Laser is undoubtedly one of the most important inventions of the twentieth century. Today, it is widely deployed for a cornucopia of applications including materials processing. Different lasers such as CO2, Nd:YAG, excimer, copper vapor, diode, fiber lasers, etc., are being used extensively for various materials processing applications like cutting, welding, brazing, surface treatment, peening, and rapid manufacturing by adopting conventional and unconventional routes with unprecedented precision. In view of its potential for providing solution to the emerging problems of the industrial materials processing and manufacturing technologies, a comprehensive program on laser materials processing and allied technologies was initiated at our laboratory. A novel feature-based design and additive manufacturing technologies facilitated the laser rapid manufacturing of complex engineering components with superior performance. This technology is being extended for the fabrication of anatomically shaped prosthetics with internal heterogeneous architectures. Laser peening of spring steels brought significant improvement in its fatigue life. Laser surface treatments resulted in enhanced intergranular corrosion resistance of AISI 316(N) and 304 stainless steel. Parametric dependence of laser welding of dissimilar materials, AISI 316M stainless steel with alloy D9, was established for avoiding cracks under optimum processing conditions. In the domain of laser cutting and piercing, the development of a power ramped pulsed mode with high pulse repetition frequency and low duty cycle scheme could produce highly circular, narrow holes with minimum spattered pierced holes. A review of these experimental and some theoretical studies is presented and discussed in this chapter. These studies have provided deeper insight of fascinating laser-based materials processing application for industrial manufacturing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application (Elsevier/Butterworth-Heinemann, Amsterdam/Oxford, 2005)

    Google Scholar 

  2. http://www.sandia.gov/mst/pdf/LENS.pdf, visited on June 29, 2010

  3. L. Xue, M.U. Islam, A. Theriault, Laser consolidation process for the manufacturing of structural components for advanced robotic mechatronic system – a state of art review, in Proceedings of 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space (i-SAIRAS 2001), Canadian Space Agency, St-Hubert, Quebec, Canada, 18–22 June 2001

    Google Scholar 

  4. C.P. Paul, A. Khajepour, Automated laser fabrication of cemented carbide components. Opt. Laser Technol. 40, 735–741 (2008)

    Article  ADS  Google Scholar 

  5. S.J. Davis, K.G. Watkins, G. Dearden, E. Fearon, J. Zeng, Optimum deposition parameters for the direct laser fabrication (DLF) of quasi-hollow structures, in Proceedings of Photon Conference Manchester, Institute of Physics. Bristol, UK (2006)

    Google Scholar 

  6. X. He, G. Yu, J. Mazumder, Temperature and composition profile during double-track laser cladding of H13 tool steel. J. Phys. D Appl. Phys. 43, 015502 (2010)

    Article  ADS  Google Scholar 

  7. R.J. Moat, A. Pinkerton, L. Li, P.J. Withers, M. Preuss, Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy. Acta Mater. 5, 1220–1229 (2009)

    Article  Google Scholar 

  8. M. Zhong, W. Liu, Laser surface cladding: the state of the art and challenges. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 1041–1060 (2010)

    Article  Google Scholar 

  9. B. Valsecchi, B. Previtali, M. Vedani, G. Vimercati, Fiber laser cladding with high content of Wc-Co based powder. Int. J. Mater. Form. 3(Suppl 1), 1127–1130 (2010)

    Article  Google Scholar 

  10. E. Kreutz, G. Backes, A. Gasser, K. Wissenbach, Rapid prototyping with CO2 laser radiation. Appl. Surf. Sci. 86, 310–316 (1995)

    Article  ADS  Google Scholar 

  11. S. Sun, Y. Durandet, M. Brandt, Parametric investigation of pulsed Nd:YAG laser cladding of Stellite 6 on stainless steel. Surf. Coat. Technol. 194, 225–231 (2005)

    Article  Google Scholar 

  12. H. Gedda, J. Powell, G. Wahistrom, W.B. Li, H. Engstrom, C. Magnusson, Energy redistribution during CO2 laser cladding. J. Laser Appl. 14, 78–82 (2002)

    Article  Google Scholar 

  13. U. Draugelates et al., Corrosion and wear protection by CO2 laser beam cladding combined with the hot wire technology, in Proceedings ECLAT ‘94, DGM Informationsgesellschaft Verlag, Oberursel, Germany (1994), pp. 344–354

    Google Scholar 

  14. F. Hensel, C. Binroth, G. Sepold, A comparison of powder and wire-fed laser beam cladding, in Proceedings ECLAT ‘92, DGM Informationsgesellschaft Verlag, Oberursel, Germany (1992), pp. 39–44

    Google Scholar 

  15. P. Ganesh, A. Moitra, P. Tiwari, S. Sathyanarayanan, H. Kumar, S.K. Rai, R. Kaul, C.P. Paul, R.C. Prasad, L.M. Kukreja, Fracture behavior of laser-clad joint of Stellite 21 on AISI 316L stainless steel. Mater. Sci. Eng. A 527, 3748–3756 (2010)

    Article  Google Scholar 

  16. C.P. Paul, H. Alemohammad, E. Toyserkani, A. Khajepour, S. Corbin, Cladding of WC-12Co on low carbon steel using a pulsed Nd:YAG laser. Mater. Sci. Eng. A 464, 170–176 (2007)

    Article  Google Scholar 

  17. C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi, A.K. Nath, Investigating laser rapid manufacturing for Inconel-625 components. Opt. Laser Technol. 39, 800–805 (2007)

    Article  ADS  Google Scholar 

  18. C.P. Paul, A. Jain, P. Ganesh, J. Negi, A.K. Nath, Laser rapid manufacturing of colmonoy components. Laser Opt. Eng. 44, 1096–1109 (2006)

    Article  Google Scholar 

  19. C.P. Paul, S.K. Mishra, C.H. Premsingh, P. Bhargava, P. Tiwari, L.M. Kukreja, Studies on laser rapid manufacturing of cross-thin-walled porous structures of Inconel 625. Int. J. Adv. Manuf. Technol. 61, 757–770 (2012)

    Article  Google Scholar 

  20. R. Kaul, P. Ganesh, S.K. Albert, A. Jaiswal, N.P. Lalla, A. Gupta, C.P. Paul, A.K. Nath, Laser cladding of austenitic stainless steel with nickel base hardfacing alloy. Surf. Eng. 19, 269–273 (2003)

    Article  Google Scholar 

  21. P. Ganesh, R. Kaul, S. Mishra, P. Bhargava, C.P. Paul, C.P. Singh, P. Tiwari, S.M. Oak, R.C. Prasad, Laser rapid manufacturing of Bi-metallic tube with Stellite-21 and austenitic stainless steel. Trans. IIM. 62, 169–174 (2009)

    Google Scholar 

  22. R. Kaul, P. Ganesh, C.P. Paul, S.K. Albert, U.K. Mudali, A.K. Nath, Some recent studies on laser cladding and dissimilar welding, in Proceedings of International Conference – Laser Applications and Technologies (LAT 2005), St. Petersburg, SPIE vol. 6053, pp. 60530O1–60530O10.

    Google Scholar 

  23. R. Kaul, P. Ganesh, M.K. Tiwari, A.K. Singh, P. Tripathi, A. Gupta, A.K. Nath, Laser-assisted deposition of graded overlay of Stellite 6 on austenitic stainless steel. Lasers Eng. 12, 207–225 (2002)

    Article  Google Scholar 

  24. S. Kumar, S. Roy, C.P. Paul, Numer. Heat Transf. Part B 53, 271 (2008)

    Article  ADS  Google Scholar 

  25. www.csc.fi/english/pages/elmer

  26. A. Kumar, C.P. Paul, A.K. Pathak, P. Bhargava, L.M. Kukreja, Opt. Laser Technol. 44, 555–565 (2012)

    Article  ADS  Google Scholar 

  27. Y. Sano, O. Hatamleh, Conf. Chairs, Technical Digest, The 3rd International Conference on Laser Peening and Related Phenomena, October 11–14, 2011, Osaka, Japan, pp 1–99

    Google Scholar 

  28. www.nmc.ctc.com, visited on 18th August 2012

  29. P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranagnathan, P. Hedaoo, P. Tiwari, L.M. Kukreja, S.M. Oak, S. Dasari, G. Raghavendra, Studies on laser peening of spring steel for automotive applications. Opt. Lasers Eng. 50, 678–686 (2012)

    Article  Google Scholar 

  30. R. Sundar, K. Ranganathan, J. George, S.M. Oak, Experimental analysis of the effects of orientation and location of the Pockels cell in an Nd:YAG laser resonator. Opt. Laser Technol. 41, 705–709 (2009)

    Article  ADS  Google Scholar 

  31. R. Sundar, K. Ranganathan, S.M. Oak, Generation of flattened Gaussian beam profiles in a Nd:YAG laser with a Gaussian mirror resonator. Appl. Opt. 47, 147–152 (2008)

    Article  ADS  Google Scholar 

  32. S.L. Chen, W. O’Niel, The effects of power rippling on CO2 laser cutting. Opt. Laser Technol. 29, 125–134 (1997)

    Article  ADS  Google Scholar 

  33. J. Powell, D. Petring, R.V. Kumar, S.O. Al-Mashikhi, A.F.H. Kaplan, K.T. Voisey, J. Phys. D. Appl. Phys. 42, 015504 (2009)

    Article  ADS  Google Scholar 

  34. B.S. Yilbas, B. Abdul Aleem, J. Phys. D. Appl. Phys. 39, 1451–1461 (2006)

    Article  Google Scholar 

  35. P. Yudin, K. Oleg, J. Laser Appl. 21, 39–45 (2009)

    Article  ADS  Google Scholar 

  36. A. Mahrle, E. Beyer, J. Phys. D. Appl. Phys. 42, 175507 (2009)

    Article  ADS  Google Scholar 

  37. M. Sobih, P.L. Crouse, L. Li, J. Phys. D. Appl. Phys. 40, 6908–6916 (2007)

    Article  ADS  Google Scholar 

  38. J. Powell, CO 2 Laser Cutting, 1st edn. (Springer, New York, 1993)

    Book  Google Scholar 

  39. B.T. Rao, M.O. Ittoop, L.M. Kukreja, Opt. Lasers Eng. 47, 1108–1116 (2009)

    Article  Google Scholar 

  40. B.T. Rao, B. Verma, R. Kaul, L.M. Kukreja, in Proceeding of DAE-BRNS National Laser Symposium, Raja Ramanna Center for Advanced Technology, Indore, Contributed Paper No. 7.14, 1–4 Dec. 2010

    Google Scholar 

  41. W.M. Steen, Laser Material Processing, 3rd edn. (Springer, London/Berlin/Heidelberg, 2003)

    Book  Google Scholar 

  42. E. Toyserkani, A. Khajepour, S.F. Corbin, Laser Cladding (CRC Press, 2004). ISBN: 0-8493-2172-7

    Google Scholar 

  43. C.P. Paul, P. Bhargava, A. Kumar, A.K. Pathak, L.M. Kukreja, in Lasers in Manufacturing, ed. by J.P. Davim, John Wiley & Sons, Inc. Hoboken, NJ, USA (2013)

    Google Scholar 

  44. C.P. Paul, Parametric studies of Laser Metal Deposition for fabrication engineering components. PhD Thesis, 2005, Devi Ahilya University, Indore, India

    Google Scholar 

  45. Y. Li, J. Ma, Surf. Coat. Technol. 90, l (1997)

    Google Scholar 

  46. J. Zeng, Y.-H. Kim, Y. Chen, Adv. Mater. Res. 399–401, 1802 (2012)

    Google Scholar 

  47. R. Kaul, P. Ganesh, M.O. Ittoop, A.K. Nath, A. Kumar, R.B. Bhatt, A. Kumar, Microstructural characterization of a dissimilar weld of alloy D9 and 316M stainless steel produced using a 2.5 kW CW CO2 laser. Lasers Eng. 12, 17–33 (2002)

    Article  Google Scholar 

  48. E.M. Anawa, A.G. Olabi, Optimization of tensile strength of ferritic/austenitic laser welded components. Opt. Laser Technol. 46, 571–577 (2008)

    Article  Google Scholar 

  49. M.J. Torkamany, S. Tahamtan, J. Sabbaghzadeh, Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser. Mater. Des. 31, 458–465 (2010)

    Article  Google Scholar 

  50. C. Dharmendra, K.P. Rao, J. Wilden, S. Reich, Study on laser welding–brazing of zinc coated steel to aluminum alloy with a Zinc based filler. Mater. Sci. Eng. A 528, 1497–1503 (2011)

    Article  Google Scholar 

  51. T.A. Mai, A.C. Spowage, Characterization of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium. Mater. Sci. Eng. A 374, 224–233 (2004)

    Article  Google Scholar 

  52. Y. Sechi, T. Tsumura, K. Nakata, Dissimilar laser brazing of boron nitride and tungsten carbide. Mater. Des. 31, 2071–2077 (2010)

    Article  Google Scholar 

  53. W. Lippmann, J. Knorr, R. Wolf, R. Rasper, H. Exner, A.-M. Reinecke, M. Nieher, R. Schreiber, Laser joining of silicon carbide – a new technology for ultra-high temperature resistant joints. Nucl. Eng. Des. 231, 151–161 (2004)

    Article  Google Scholar 

  54. J.P. Davim, Lasers in Manufacturing, John Wiley & Sons, Inc. Hoboken, NJ, USA (2013)

    Google Scholar 

  55. M. Kimura, Fiber Lasers: Research, Technology and Applications (Nova Science Publishers Inc., New York, 2009)

    Google Scholar 

  56. W.M. Steen, J. Mazumder, Laser Materials Processing, 4th edn. (Springer-verlag London Limited, London, 2010)

    Book  Google Scholar 

  57. S. Huang, H. Tsai, S. Lin, Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix. Mater. Chem. Phys. 84, 251–258 (2004)

    Article  Google Scholar 

  58. L.-q. Li, X.-s. Feng, Y.-b. Chen, Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal. Trans. Nonferr. Met. Soc. China 18, 1065–1070 (2008)

    Article  Google Scholar 

  59. P. Peyre, G. Sierra, F. Deschaux-Beaume, D. Stuart, G. Fras, Generation of aluminium–steel joints with laser-induced reactive wetting. Mater. Sci. Eng. A 444, 327–338 (2007)

    Article  Google Scholar 

  60. K. Chandra, V. Kain, P. Ganesh, Controlling end-grain corrosion of austenitic stainless steels. J. Mater. Eng. Perform. 17, 115–122 (2008)

    Article  Google Scholar 

  61. N. Parvathavarthini, R.K. Dayal, R. Kaul, P. Ganesh, J. Khare, A.K. Nath, S.K. Mishra, I. Samajdar, Novel laser surface treatment approach to suppress sensitization in modified Type 316(N) stainless steel weld metal. Sci. Technol. Weld. Join. 13, 335–343 (2008)

    Article  Google Scholar 

  62. R. Kaul, S. Mahajan, V. Kain, P. Ganesh, K. Chandra, I. Samajdar, A.K. Nath, R.C. Prasad, Laser surface treatment for enhancing intergranular corrosion resistance of AISI 304 stainless steel. Corrosion 64, 755–762 (2008)

    Article  Google Scholar 

  63. R. Kaul, N. Parvathavarthini, P. Ganesh, S.V. Mulki, I. Samajdar, R.K. Dayal, L.M. Kukreja, A novel pre-weld laser surface treatment for enhanced inter-granular corrosion resistance of austenitic stainless steel weldment. Weld. J. 88, 233s–242s (2009)

    Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to Dr. P.D. Gupta, Director RRCAT, for his constant support and encouragement. Thanks are due to our collaborators: Prof A.K. Nath of Indian Institute of Technology, Kharagpur, India, and Prof B.K. Gandhi of Indian Institute of Technology, Roorkee, India. The authors are also thankful to our collaborators and colleagues: Dr. S M Oak, Mr. K Ranganathan, Mr. R Sundar, and Mr. P. Hedaoo of Solid State Laser Division RRCAT for laser peening work. During the experimental work presented above, the technical supports of Mr. S.K. Mishra, Mr. C.H. Prem Singh, Mr. M.O. Ittoop, Mr. Abrat Varma, Mr. Anil Adbol, Mr. Ram Nihal Ram, and Mr. S.K. Perkar are thankfully acknowledged. One of the authors, Dr. C.P. Paul, acknowledges the enthusiastic collaboration and fruitful discussions with Prof. A. Khajepour, Prof. E. Toyserkani, Prof. S. Corbin, and Dr. M. Alimardani at the University of Waterloo, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kukreja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Kukreja, L.M., Paul, C.P., Kumar, A., Kaul, R., Ganesh, P., Rao, B.T. (2015). Lasers in Materials Processing. In: Gupta, P., Khare, R. (eds) Laser Physics and Technology. Springer Proceedings in Physics, vol 160. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2000-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2000-8_12

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1999-6

  • Online ISBN: 978-81-322-2000-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics