Skip to main content

Performance of Incremental Redundancy-Based Data Transmission in Randomly Deployed Wireless Sensor Network

  • Chapter
  • First Online:
Applied Computation and Security Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 304))

  • 490 Accesses

Abstract

Energy-level performance of Incremental Redundancy (IR)-based Hybrid Automatic Repeat reQuest (HARQ) scheme using punctured convolution code is evaluated for randomly deployed wireless sensor network (WSN) in the presence of multipath Rician fading. Transmission based on HARQ and optimal power are two different promising approaches for reducing energy consumption in an energy constrained WSN. Optimal transmit power is the minimum power required to sustain the network connectivity while maintaining a predefined maximum tolerable BER threshold in a multihop route. In the present work, energy-level performance of HARQ scheme is compared with that of optimal transmit power-based coded and uncoded schemes for a random WSN. Further, energy consumption for an arbitrary fixed power-based coded scheme is also compared. In a random network, an intermediate node in the route selects the nearest node within a sector of angle (θ) toward the direction of the destination as the next hop. Effects of fading, node density, and search angle on selection of optimum power, energy consumption of optimum power-based scheme, and IR scheme are investigated. Effects of code rate and bit rate on energy consumption, route BER, and optimum power selection in case of optimum power-based coded scheme are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Article  Google Scholar 

  2. Nandi, A., Kundu, S.: Energy level performance of error control schemes in wireless sensor networks. IEEE International Conference on Devices and Communications (ICDeCom 2011), pp. 1–5, 2011

    Google Scholar 

  3. Davarian, F.: Fade margin calculation for channels impaired by Rician fading. IEEE Trans. Veh. Technol. 34(1), 41–44 (1985)

    Article  Google Scholar 

  4. Sankarasubramaniam Y., Akyildiz I.F,. Mclaughlin S.W.: Energy efficiency based packet size optimization in wireless sensor networks. Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications 2003, pp. 1–8, 2003

    Google Scholar 

  5. Panichpapiboon, S., Ferrari, G., Tonguz, O.K.: Optimal Transmit Power in Wireless Sensor Networks. IEEE Trans. Mob. Comput. 5(10), 1432–1447 (2006)

    Article  Google Scholar 

  6. Agarwal, S., Katz, R., Krishnamurthy, S.V., Dao, S.K.: Distributed Power Control in Ad Hoc Wireless Networks. Proceedings of the IEEE international symposium personal, indoor, and mobile radio communication (PIMRC), pp. F59–F66, 2001

    Google Scholar 

  7. Nandi, A., Kundu, S.: Energy level performance of retransmission schemes in wireless sensor networks over rayleigh fading channel. Proceedings of the IEEE international conference on computational intelligence and communication networks (CICN 2010), pp. 220–225, 2010

    Google Scholar 

  8. Nandi, A., Kundu, S.: Evaluation of optimal transmit power in wireless sensor networks in presence of rayleigh fading. ICTACT J Commun Technol 1(2), 107–112 (2010)

    MathSciNet  Google Scholar 

  9. Cruz, R.L., Santhanam, A.V.: Optimal routing, link scheduling and power control in multi-hop wireless networks. Proc. IEEE Conf. Computer Comm. 1, 702–711 (2003)

    Google Scholar 

  10. Nandi, A., Kundu, S.: Energy level performance of packet delivery schemes in wireless sensor networks in shadowed channel. Sens. Transducers J. 118(7), 73–86 (2010)

    Google Scholar 

  11. Narayanaswamy, S., Kawadia, V., Sreenivas, R.S., Kumar, P.R.: Power control in ad hoc networks: theory, architecture, algorithm and implementation of the COMPOW protocol. Proceedings of the European wireless next generation wireless networks: technologies, protocols, services, and applications, pp. 156–162, 2002

    Google Scholar 

  12. Stanojev, I., Simeone, O., Bar-Ness, Y., Kim, D.H.: IEEE Trans. Wireless Commun. 8(1), 326–335 (2009)

    Article  Google Scholar 

  13. Rossi, M., Zanca, G., Stabellini, L., Crepaldi, R., Harris, A.F., Zorzi, M.: Synapse: A network reprogramming protocol for wireless sensor networks using fountain codes, 5th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, pp. 188–196, 2008

    Google Scholar 

  14. Sesia, S., Caire, G., Vivier, G.: Incremental redundancy hybrid arq schemes based on low-density parity-check codes. IEEE Trans. Commun. 52(8), 1311–1321 (2004)

    Article  Google Scholar 

  15. Nosratinia, A., Hunter, T., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42(10), 68–73 (2004)

    Article  Google Scholar 

  16. Hunter, T., Nosratinia, A.: Diversity through coded cooperation. IEEE Trans. Commun. 5, 283–289 (2006)

    Google Scholar 

  17. Nandi, A., Kundu, S.: Optimal transmit power and packet size in wireless sensor networks in shadowed channel. Int. J. Sens. Networks 11(2), 81–89 (2012)

    Article  Google Scholar 

  18. Ferrari, G., Tonguz, O.K.: Performance of ad hoc wireless networks with aloha and PR-CSMA MAC protocols, Proceedings of the IEEE Global Telecommunication Conference (GLOBECOM), pp. 2824–2829, Dec 2003

    Google Scholar 

  19. Goldsmith, A.: Wireless communications. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  20. Sklar, B.: Rayleigh fading channels in mobile digital communication systems Part I: characterization. IEEE Communication Magazine, pp. 90–100, July 2003

    Google Scholar 

  21. Shih E., Cho, S.-H., Ickes, N., Min, R., Sinha, A., Wang, A., Chandrakasan, A.: Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In Proceedings of the 7th annual international conference on mobile computing and networking (MobiCom ‘01), 2001

    Google Scholar 

  22. Intel® StrongARM® SA-1110 Microprocessor Developer’s Manual, Intel Corporation, http://www.intel.com, 1999

  23. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  24. Heller, J.A., Jacobs, I.M.: Viterbi decoding for satellite and space communication. IEEE Trans. Commun. Technol. 19(5), 835–848 (1971)

    Article  Google Scholar 

  25. Yasuda, Y., Kashiki, K., Hirata, Y.: High rate punctured convolutional codes for soft decision Viterbi decoding. IEEE Trans. Commun. 32(3), 315–319 (1984)

    Article  Google Scholar 

  26. Haccoun, D., Begin, G.: High-rate punctured convolutional codes for Viterbi and sequential decoding. IEEE Trans. Commun. 37(11), 1113–1125 (1989)

    Article  MathSciNet  Google Scholar 

  27. Kleinschmidt, J.H., Borelli, W.C., Pellenz, M.E, An analytical model for energy efficiency of error control schemes in sensor networks. ICC ‘07. IEEE International Conference on Communications 2007, pp. 3895–3900, 2007

    Google Scholar 

  28. Nandi, A., Kundu, S.: Energy efficient packet data service in wireless sensor network in presence of raylrigh fading. Int. J. Grid High Perform. Comput. (IJGHPC) 3(3), 31–44 (2011). doi:10.4018/jghpc.2011070103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousam Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Chatterjee, M., Nandi, A., Basu, B. (2015). Performance of Incremental Redundancy-Based Data Transmission in Randomly Deployed Wireless Sensor Network. In: Chaki, R., Saeed, K., Choudhury, S., Chaki, N. (eds) Applied Computation and Security Systems. Advances in Intelligent Systems and Computing, vol 304. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1985-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1985-9_12

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1984-2

  • Online ISBN: 978-81-322-1985-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics