Advertisement

Quorum Sensing in Escherichia coli: Interkingdom, Inter- and Intraspecies Dialogues, and a Suicide-Inducing Peptide

  • Bloom-Ackermann Zohar
  • Ilana Kolodkin-Gal
Chapter

Abstract

An emerging theme in microbiology is the ability of bacteria to communicate with one another via quorum-sensing signal molecules (Bassler and Losick, Cell 125:237–246, 2006; Camilli and Bassler, Science 311:1113–1116, 2006; Fuqua et al., Annu Rev Microbiol 50:727–751, 1996; Waters and Bassler, Annu Rev Cell Dev Biol 21:319–346, 2005). Quorum sensing provides a mechanism for bacteria to monitor one another’s presence and to modulate gene expression in response to population density. In the simplest scenario, accumulation of a threshold autoinducer concentration, which is correlated with increasing population density, initiates a signal transduction cascade that culminates in a population-wide alteration in gene expression. Our text brought here is highlighting the recent development in the study of quorum-sensing behaviors in E. coli. This bacterium intriguingly integrates self-produced quorum-sensing signals as well as signals produced by epithelial cells and neighbor gut bacteria.

Keywords

Acid Resistance luxS Mutant LuxR Homolog LuxI Homolog Indole Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmer BM (2004) Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol 52:933–945PubMedCrossRefGoogle Scholar
  2. Aizenman E, Engelberg-Kulka H, Glaser G (1996) An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci USA 93:6059–6063PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aspiras MB, Ellen RP, Cvitkovitch DG (2004) ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol Lett 238:167–174PubMedGoogle Scholar
  4. Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A (2007) Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun 75:4597–4607PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bansal T, Jesudhasan P, Pillai S, Wood TK, Jayaraman A (2008) Temporal regulation of enterohemorrhagic Escherichia coli virulence mediated by autoinducer-2. Appl Microbiol Biotechnol 78:811–819PubMedCrossRefGoogle Scholar
  6. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246PubMedCrossRefGoogle Scholar
  7. Belitsky M, Avshalom H, Erental A, Yelin I, Kumar S, London N, Sperber M, Schueler-Furman O, Engelberg-Kulka H (2011) The Escherichia coli extracellular death factor EDF induces the endoribonucleolytic activities of the toxins MazF and ChpBK. Mol Cell 41:625–635PubMedCrossRefGoogle Scholar
  8. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116PubMedCrossRefPubMedCentralGoogle Scholar
  9. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535PubMedPubMedCentralGoogle Scholar
  10. Clarke MB, Sperandio V (2005) Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. Mol Microbiol 57:1734–1749PubMedCrossRefGoogle Scholar
  11. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425PubMedCrossRefPubMedCentralGoogle Scholar
  12. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  13. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26:822–880PubMedCrossRefGoogle Scholar
  14. De Lay N, Gottesman S (2009) The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 191:461–476PubMedCrossRefPubMedCentralGoogle Scholar
  15. DeLisa MP, Wu CF, Wang L, Valdes JJ, Bentley WE (2001) DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol 183:5239–5247PubMedCrossRefPubMedCentralGoogle Scholar
  16. Domka J, Lee J, Wood TK (2006) YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72:2449–2459PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dziva F, van Diemen PM, Stevens MP, Smith AJ, Wallis TS (2004) Identification of Escherichia coli O157: H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150:3631–3645PubMedCrossRefGoogle Scholar
  18. Engebrecht J, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81:4154–4158PubMedCrossRefPubMedCentralGoogle Scholar
  19. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135PubMedCrossRefPubMedCentralGoogle Scholar
  20. Englert DL, Manson MD, Jayaraman A (2009) Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol 75:4557–4564PubMedCrossRefPubMedCentralGoogle Scholar
  21. Freestone PPE, Lyte M, Neal CP, Maggs AF, Haigh RD, Williams PH (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182:6091–6098Google Scholar
  22. Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751PubMedCrossRefGoogle Scholar
  23. Gaimster H, Cama J, Hernandez-Ainsa S, Keyser UF, Summers DK (2014) The indole pulse: a new perspective on indole signalling in Escherichia coli. PLoS One 9:e93168PubMedCrossRefPubMedCentralGoogle Scholar
  24. Girón JA, Torres AG, Freer E, Kaper JB (2002) The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379PubMedCrossRefGoogle Scholar
  25. Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hanzelka BL, Greenberg EP (1995) Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J Bacteriol 177:815–817PubMedPubMedCentralGoogle Scholar
  27. Hazan R, Sat B, Engelberg-Kulka H (2004) Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J Bacteriol 186:3663–3669PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C, Wood TK, Manson MD, Jayaraman A (2011) Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J Bacteriol 193:768–773PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A (2005) Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 55:1113–1126PubMedCrossRefGoogle Scholar
  30. Hirakawa H, Kodama T, Takumi-Kobayashi A, Honda T, Yamaguchi A (2009) Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157:H7. Microbiology 155:541–550PubMedCrossRefGoogle Scholar
  31. Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V (2009) The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathog 5:e1000553PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hughes DT, Terekhova DA, Liou L, Hovde CJ, Sahl JW, Patankar AV, Gonzalez JE, Edrington TS, Rasko DA, Sperandio V (2010) Chemical sensing in mammalian host-bacterial commensal associations. Proc Natl Acad Sci USA 107:9831–9836PubMedCrossRefPubMedCentralGoogle Scholar
  33. Humbert R, Simoni RD (1980) Genetic and biomedical studies demonstrating a second gene coding for asparagine synthetase in Escherichia coli. J Bacteriol 142:212–220PubMedPubMedCentralGoogle Scholar
  34. Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276:2027–2030PubMedCrossRefGoogle Scholar
  35. Kanamaru K, Kanamaru K, Tatsuno I, Tobe T, Sasakawa C (2000) SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 38:805–816PubMedCrossRefGoogle Scholar
  36. Karavolos MH, Winzer K, Williams P, Khan CM (2013) Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems. Mol Microbiol 87:455–465PubMedCrossRefGoogle Scholar
  37. Keeney KM, Finlay BB (2013) Microbiology: EHEC downregulates virulence in response to intestinal fucose. Curr Biol CB 23:R108–R110CrossRefGoogle Scholar
  38. Kolodkin-Gal I, Engelberg-Kulka H (2008) The extracellular death factor: physiological and genetic factors influencing its production and response in Escherichia coli. J Bacteriol 190:3169–3175PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318:652–655PubMedCrossRefGoogle Scholar
  40. Kolter R (2007) Microbiology. Deadly priming. Science 318:578–579PubMedCrossRefGoogle Scholar
  41. Kumar S, Kolodkin-Gal I, Engelberg-Kulka H (2013) Novel quorum-sensing peptides mediating interspecies bacterial cell death. mBio 4:e00314–00313PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lazazzera BA (2001) The intracellular function of extracellular signaling peptides. Peptides 22:1519–1527PubMedCrossRefGoogle Scholar
  43. Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2:581–592PubMedCrossRefGoogle Scholar
  44. Lee J, Jayaraman A, Wood TK (2007) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lee J, Zhang XS, Hegde M, Bentley WE, Jayaraman A, Wood TK (2008) Indole cell signaling occurs primarily at low temperatures in Escherichia coli. ISME J 2:1007–1023PubMedCrossRefGoogle Scholar
  46. Lee J, Maeda T, Hong SH, Wood TK (2009) Reconfiguring the quorum-sensing regulator SdiA of Escherichia coli to control biofilm formation via indole and N-acylhomoserine lactones. Appl Environ Microbiol 75:1703–1716PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82–85PubMedCrossRefPubMedCentralGoogle Scholar
  48. Li J, Wang L, Hashimoto Y, Tsao C-Y, Wood TK, Valdes JJ, Zafiriou E, Bentley WE (2006) A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis pathways. Mol Syst Biol 2:67PubMedCrossRefPubMedCentralGoogle Scholar
  49. Li J, Attila C, Wang L, Wood TK, Valdes JJ, Bentley WE (2007) Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol 189:6011–6020PubMedCrossRefPubMedCentralGoogle Scholar
  50. Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403PubMedCrossRefGoogle Scholar
  51. Lyte M, Arulanandam BP, Frank CD (1996) Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. J Lab Clin Med 128:392–398PubMedCrossRefGoogle Scholar
  52. Magnuson R, Solomon J, Grossman AD (1994) Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77:207–216PubMedCrossRefGoogle Scholar
  53. Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS (2003) Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49:443–449PubMedCrossRefGoogle Scholar
  54. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449PubMedCrossRefGoogle Scholar
  55. Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, Sperandio V (2012) Fucose sensing regulates bacterial intestinal colonization. Nature 492:113–117PubMedCrossRefPubMedCentralGoogle Scholar
  56. Pereira CS, Santos AJM, Bejerano-Sagie M, Correia PB, Marques JC, Xavier KB (2012) Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2. Mol Microbiol 84:93–104PubMedCrossRefGoogle Scholar
  57. Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37:156–181PubMedGoogle Scholar
  58. Rahmati S, Yang S, Davidson AL, Zechiedrich EL (2002) Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 43:677–685PubMedCrossRefGoogle Scholar
  59. Reading NC, Torres AG, Kendall MM, Hughes DT, Yamamoto K, Sperandio V (2007) A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol 189:2468–2476PubMedCrossRefPubMedCentralGoogle Scholar
  60. Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004a) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524PubMedCrossRefGoogle Scholar
  61. Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK (2004b) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88:630–642PubMedCrossRefGoogle Scholar
  62. Sat B, Hazan R, Fisher T, Khaner H, Glaser G, Engelberg-Kulka H (2001) Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality. J Bacteriol 183:2041–2045PubMedCrossRefPubMedCentralGoogle Scholar
  63. Sat B, Reches M, Engelberg-Kulka H (2003) The Escherichia coli mazEF suicide module mediates thymineless death. J Bacteriol 185:1803–1807PubMedCrossRefPubMedCentralGoogle Scholar
  64. Sheng H, Lim JY, Knecht HJ, Li J, Hovde CJ (2006) Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect Immun 74:4685–4693PubMedCrossRefPubMedCentralGoogle Scholar
  65. Sitnikov DM, Shadel GS, Baldwin TO (1996) Autoinducer-independent mutants of the LuxR transcriptional activator exhibit differential effects on the two lux promoters of Vibrio fischeri. Mol Gen Genet MGG 252:622–625Google Scholar
  66. Smith T (1897) A modification of the method for determining the production of indol by bacteria. J Exp Med 2:543–547PubMedCrossRefPubMedCentralGoogle Scholar
  67. Smith JN, Ahmer BM (2003) Detection of other microbial species by Salmonella: expression of the SdiA regulon. J Bacteriol 185:1357–1366PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sperandio V, Torres AG, Giron JA, Kaper JB (2001) Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187–5197PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956PubMedCrossRefPubMedCentralGoogle Scholar
  70. Surette MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA 96:1639–1644PubMedCrossRefPubMedCentralGoogle Scholar
  71. Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130–5140PubMedCrossRefPubMedCentralGoogle Scholar
  72. Swearingen MC, Sabag-Daigle A, Ahmer BM (2013) Are there acyl-homoserine lactones within mammalian intestines? J Bacteriol 195:173–179PubMedCrossRefPubMedCentralGoogle Scholar
  73. Taga ME, Semmelhack JL, Bassler BL (2001) The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol 42:777–793PubMedCrossRefGoogle Scholar
  74. Tavender TJ, Halliday NM, Hardie KR, Winzer K (2008) LuxS-independent formation of AI-2 from ribulose-5-phosphate. BMC Microbiol 8:98PubMedCrossRefPubMedCentralGoogle Scholar
  75. Tortosa P, Dubnau D (1999) Competence for transformation: a matter of taste. Curr Opin Microbiol 2:588–592PubMedCrossRefGoogle Scholar
  76. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344PubMedCrossRefPubMedCentralGoogle Scholar
  77. Udekwu KI (2010) Transcriptional and post-transcriptional regulation of the Escherichia coli luxS mRNA; involvement of the sRNA MicA. PLoS One 5:e13449PubMedCrossRefPubMedCentralGoogle Scholar
  78. Van Houdt R, Aertsen A, Moons P, Vanoirbeek K, Michiels CW (2006) N-acyl-L-homoserine lactone signal interception by Escherichia coli. FEMS Microbiol Lett 256:83–89PubMedCrossRefGoogle Scholar
  79. Vega NM, Allison KR, Khalil AS, Collins JJ (2012) Signaling-mediated bacterial persister formation. Nat Chem Biol 8:431–433PubMedCrossRefPubMedCentralGoogle Scholar
  80. Walters M, Sperandio V (2006) Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol IJMM 296:125–131CrossRefGoogle Scholar
  81. Walters M, Sircili MP, Sperandio V (2006) AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol 188:5668–5681PubMedCrossRefPubMedCentralGoogle Scholar
  82. Wang XD, de Boer PA, Rothfield LI (1991) A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J 10:3363–3372PubMedPubMedCentralGoogle Scholar
  83. Wang D, Ding X, Rather PN (2001) Indole can act as an extracellular signal in Escherichia coli. J Bacteriol 183:4210–4216PubMedCrossRefPubMedCentralGoogle Scholar
  84. Wang L, Hashimoto Y, Tsao C-Y, Valdes J, Bentley WE, Valdes JJ (2005a) Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J Bacteriol 187(6):2066–2076Google Scholar
  85. Wang L, Li J, March JC, Valdes JJ, Bentley WE (2005b) luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 187:8350–8360PubMedCrossRefPubMedCentralGoogle Scholar
  86. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  87. Wei Y, Lee JM, Smulski DR, LaRossa RA (2001) Global impact of sdiA amplification revealed by comprehensive gene expression profiling of Escherichia coli. J Bacteriol 183:2265–2272PubMedCrossRefPubMedCentralGoogle Scholar
  88. Xavier KB, Bassler BL (2005a) Interference with AI-2-mediated bacterial cell-cell communication. Nature 437:750–753PubMedCrossRefPubMedCentralGoogle Scholar
  89. Xavier KB, Bassler BL (2005b) Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol 187:238–248PubMedCrossRefPubMedCentralGoogle Scholar
  90. Xavier KB, Miller ST, Lu W, Kim JH, Rabinowitz J, Pelczer I, Semmelhack MF, Bassler BL (2007) Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem Biol 2:128–136PubMedCrossRefGoogle Scholar
  91. Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci USA 98:1507–1512PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations