Quorum-Sensing Systems in Pseudomonas



Quorum sensing (QS) or cell-to-cell communication is a mechanism used by bacteria to control a broad range of activities in bacteria. The modulation of gene expression by quorum sensing causes phenotypic changes in bacteria leading to their better adjustment to environmental conditions and stress during growth (Turovskiy et al. 2007). Quorum sensing involves the production, secretion, and response to small diffusible signaling molecules also known as autoinducers. Bacteria produce signaling molecules at a basal level during the stationary phase of their growth, and with the increase in cell density, the concentration of the signaling molecule in the environmental medium increases; and on reaching a threshold level, it induces phenotypic effects by regulating quorum-sensing-dependent target gene expression (Czajkowski and Jafra 2009). Quorum sensing is involved mainly in the regulation of virulence, development of genetic competence, transfer of conjugative plasmids, sporulation, biofilm formation, antimicrobial peptide synthesis, and symbiosis (Bai and Rai 2011).


Quorum Sense Quorum Sense System Homoserine Lactone Pseudomonas Quinolone Signal LuxR Family 


  1. Bai AJ, Rai VR (2011) Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf 10:183–193CrossRefGoogle Scholar
  2. Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–5502PubMedCrossRefPubMedCentralGoogle Scholar
  3. Cha C, Gao P, Chen YC, Shaw PD, Farrand S (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe 11:1119–1129CrossRefGoogle Scholar
  4. Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK (2003) GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 16:1106–1117PubMedCrossRefGoogle Scholar
  5. Chin AWTF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979CrossRefGoogle Scholar
  6. Chin AWTF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253CrossRefGoogle Scholar
  7. Choi Y, Park HY, Park SJ, Kim SK, Ha C, Im SJ, Lee JH (2011) Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa. Mol Cell 32:57–65CrossRefGoogle Scholar
  8. Chugani S, Greenberg EP (2010) LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 107:10673–10678PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:2752–2757PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cui X (2004) Regulation of biosurfactant production by quorum sensing in Pseudomonas fluorescens 5064, the Cause of Broccoli Head Rot Disease. PhD thesis, The University of EdinburghGoogle Scholar
  11. Czajkowski R, Jafra S (2009) Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56:1–16PubMedGoogle Scholar
  12. de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849PubMedCrossRefPubMedCentralGoogle Scholar
  13. Diggle SP, Matthijs S, Wright VI, Fletcher MP, Chhabra SR, Lamvont IL, Kong X, Hider RC, Cornelis P, Camara M (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96PubMedCrossRefGoogle Scholar
  14. Dong YH, Zhang XF, Soo LHM, Greenberg EP, Zhang LH (2005) The two-component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa. Mol Microbiol 56:1287–1301PubMedCrossRefGoogle Scholar
  15. Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491PubMedCrossRefGoogle Scholar
  16. Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888PubMedCrossRefGoogle Scholar
  17. EI-Sayed AK, Hothersall J, Thomas CM (2001) Quorum sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147:2127–2139Google Scholar
  18. Gallagher LA, McKnight SL, Kuzntesova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ha C, Park SJ, Im SJ, Lee JH (2012) Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol Cell 33:53–59CrossRefGoogle Scholar
  20. Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GSAB, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cistetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480PubMedGoogle Scholar
  21. Lee JH, Lequette Y, Greenberg EP (2006) Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 59:602–609PubMedCrossRefGoogle Scholar
  22. Lequette Y, Lee JH, Ledgahm F, Lazdunski A, Greenberg EP (2006) A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol 188:3365–3370PubMedCrossRefPubMedCentralGoogle Scholar
  23. Licciardello G, Bertani I, Steindler L, Bella P, Venturi V, Catara V (2009) The transcriptional activator rfiA is Quorum Sensing regulated by cotranscription with the luxI homolog pcoI essential for plant virulence in Pseudomonas corrugate. Mol Plant Microbe Interact 22:1514–1522PubMedCrossRefGoogle Scholar
  24. Licciardello G, Cinzia PS, Bertani I, Bella P, Fiore A, Fogliano V, Venturi V, Catara V (2012) N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. J Biotechnol 159:274–282PubMedCrossRefGoogle Scholar
  25. Lintz MJ, Oinuma KI, Wysoczynski CL, Greenberg EP, Churchill MEA (2011) Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci USA 108:15763–15768PubMedCrossRefPubMedCentralGoogle Scholar
  26. Liu M, Wang H, Griffiths MW (2007) Regulation of alkaline metalloprotease promoter by N-acyl homoserine lactone quorum sensing in Pseudomonas fluorescens. J Appl Microbiol 103:2174–2184PubMedCrossRefGoogle Scholar
  27. Liu HB, Koh KP, Lee JH, Kim JS, Park S (2009) Characterization of LasR protein involved in bacterial quorum sensing mechanism of Pseudomonas aeruginosa. Biotechnol Bioprocess Eng 14:146–154CrossRefGoogle Scholar
  28. McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708PubMedCrossRefPubMedCentralGoogle Scholar
  29. Park SJ, Liu HB, Park S, Lee JH (2013) Modulation of QscR, a quorum sensing receptor of Pseudomonas aeruginosa, by truncation of a signal binding domain. Res Microbiol 164:375–381PubMedCrossRefGoogle Scholar
  30. Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531PubMedCrossRefGoogle Scholar
  31. Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb Technol 49:113–123PubMedCrossRefGoogle Scholar
  32. Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81PubMedCrossRefGoogle Scholar
  33. Schuster M, Urbanowski ML, Greenberg EP (2004) Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci USA 101:15833–15839PubMedCrossRefPubMedCentralGoogle Scholar
  34. Shaw PD, Ping G, Daly S, Cronan JE, Rhinehart K, Farrand SK (1997) Detecting and characterizing acyl-homoserine lactone signal molecules by thin layer chromatography. Proce Natl Acad Sci USA 94:6036–6041CrossRefGoogle Scholar
  35. Sio FC, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ (2012) Quorum Quenching by an N-Acyl-Homoserine Lactone Acylase from Pseudomonas aeruginosa PAO. Infect Immun 74:1673–1682CrossRefGoogle Scholar
  36. Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML (2007) Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol 62:191–234PubMedCrossRefPubMedCentralGoogle Scholar
  37. Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291PubMedCrossRefGoogle Scholar
  38. Wade SD, Calfee MW, Rocha RE, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380PubMedCrossRefPubMedCentralGoogle Scholar
  39. Willcox MDP, Zhu H, Conibear TCR, Hume EBH, Givskov M, Kjelleberg S, Rice SA (2008) Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology 154:2184–2194PubMedCrossRefGoogle Scholar
  40. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191PubMedCrossRefGoogle Scholar
  41. Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411PubMedCrossRefPubMedCentralGoogle Scholar
  42. Zhang Z, Pierson LS (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Jamuna Bai Aswathanarayan
    • 1
  • V. Ravishankar Rai
    • 1
  1. 1.Department of Studies in MicrobiologyUniversity of MysoreMysoreIndia

Personalised recommendations