Quorum Sensing in Nitrogen Fixation

  • Jie Gao
  • Anzhou Ma
  • Xuliang Zhuang
  • Guoqiang Zhuang


Soil microbial activity in the rhizosphere has the effects on soil biodiversity and quality and the health of plants, thus affecting the stability and productivity of above-ground plant parts. Amazingly complex interactions exist within the unseen underground environment, including root-root, root-insect, and root-microbe interactions, which can have both positive and negative outcome (Bais et al. 2006). Over the past decade, studies of the rhizosphere have revealed that when roots, microorganisms, and soil fauna physically contact one another, bioactive molecular exchanges often mediate these interactions as intercellular signal, which prepare the partners for successful interactions. These signal molecules are derived from multiple types of biosynthesis and provide cell-signaling networks to control the individual physiological process.


Nitrogen Fixation Quorum Sense Quorum Sense System Exopolysaccharide Production Symbiotic Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alavi P, Müller H, Cardinale M, Zachow C, Sánchez MB, Martínez JL, Berg G (2013) The DSF quorum sensing system controls the positive influence of Stenotrophomonas maltophilia on plants. PLoS One 8(7):e67103PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  3. Benson DR, Silvester W (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57(2):293–319PubMedPubMedCentralGoogle Scholar
  4. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450PubMedCrossRefPubMedCentralGoogle Scholar
  5. Braeken K, Daniels R, Ndayizeye M, Vanderleyden J, Michiels J (2008) Quorum sensing in bacteria-plant interactions. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence, vol 15. Springer, Berlin/Heidelberg, pp 265–289CrossRefGoogle Scholar
  6. Charoenpanich P, Meyer S, Becker A, McIntosh M (2013) Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 195(14):3224–3236PubMedCrossRefPubMedCentralGoogle Scholar
  7. Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277(1):462–468PubMedCrossRefGoogle Scholar
  8. Danino VE, Wilkinson A, Edwards A, Downie JA (2003) Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 50(2):511–525PubMedCrossRefGoogle Scholar
  9. Díaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg BJJ, Kijne JW (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579–581CrossRefGoogle Scholar
  10. Ding H, Yip CB, Hynes MF (2013) Genetic characterization of a novel rhizobial plasmid conjugation system in Rhizobium leguminosarum bv. viciae Strain VF39SM. J Bacteriol 195(2):328–339PubMedCrossRefPubMedCentralGoogle Scholar
  11. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34(2):150–170PubMedCrossRefGoogle Scholar
  12. Edwards A, Frederix M, Wisniewski-Dyé F, Jones J, Zorreguieta A, Downie JA (2009) The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI. J Bacteriol 191(9):3059–3067PubMedCrossRefPubMedCentralGoogle Scholar
  13. Ferluga S, Venturi V (2009) OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonas oryzae pv. oryzae and rice. J Bacteriol 191(3):890–897PubMedCrossRefPubMedCentralGoogle Scholar
  14. Frederix M, Edwards A, McAnulla C, Downie JA (2011) Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor. Mol Microbiol 81(4):994–1007PubMedCrossRefGoogle Scholar
  15. Gao J, Ma A, Zhuang X, Zhuang G (2014) An N-acyl homoserine lactone synthase in the ammonia-oxidizing bacterium Nitrosospira multiformis. Appl Environ Microbiol 80(3):951–958PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105(12):4928PubMedCrossRefPubMedCentralGoogle Scholar
  17. Glenn SA, Gurich N, Feeney MA, Gonzalez JE (2007) The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti. J Bacteriol 189(19):7077–7088PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67(4):574–592PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gurich N, González JE (2009) Role of quorum sensing in Sinorhizobium meliloti-alfalfa symbiosis. J Bacteriol 191(13):4372–4382PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hoang HH, Becker A, González JE (2004) The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 186(16):5460–5472PubMedCrossRefPubMedCentralGoogle Scholar
  21. Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59(1):341–363PubMedCrossRefGoogle Scholar
  22. Jones KM, Sharopova N, Lohar DP, Zhang JQ, VandenBosch KA, Walker GC (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci USA 105(2):704PubMedCrossRefPubMedCentralGoogle Scholar
  23. Lindemann A, Pessi G, Schaefer AL, Mattmann ME, Christensen QH, Kessler A, Hennecke H, Blackwell HE, Greenberg EP, Harwood CS (2011) Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proc Natl Acad Sci USA 108(40):16765–16770PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski‐Dyé F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37(1):81–97PubMedCrossRefGoogle Scholar
  25. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425(6958):637–640PubMedCrossRefGoogle Scholar
  26. Marketon MM, Glenn SA, Eberhard A, González JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185(1):325–331PubMedCrossRefPubMedCentralGoogle Scholar
  27. Mathesius U, Watt M (2011) Rhizosphere signals for plant-microbe interactions: implications for field-grown plants. In: Lüttge UE, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 72. Springer, Berlin/Heidelberg, pp 125–161Google Scholar
  28. Mueller K, González JE (2011) Complex regulation of symbiotic functions is coordinated by MucR and quorum sensing in Sinorhizobium meliloti. J Bacteriol 193(2):485–496PubMedCrossRefPubMedCentralGoogle Scholar
  29. Nogales J, Blanca-Ordóñez H, Olivares J, Sanjuán J (2013) Conjugal transfer of the Sinorhizobium meliloti 1021 symbiotic plasmid is governed through the concerted action of one-and two-component signal transduction regulators. Environ Microbiol 15(3):811–821PubMedCrossRefGoogle Scholar
  30. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17(1):7–15PubMedCrossRefPubMedCentralGoogle Scholar
  31. Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  32. Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182(15):4310PubMedCrossRefPubMedCentralGoogle Scholar
  33. Pérez-Montaño F, Jiménez-Guerrero I, Contreras Sánchez-Matamoros R, López-Baena FJ, Ollero FJ, Rodríguez-Carvajal MA, Bellogín RA, Espuny MR (2013) Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res Microbiol 164(7):749–760PubMedCrossRefGoogle Scholar
  34. Phillips DA, Tsai SM (1992) Flavonoids as plant signals to rhizosphere microbes. Mycorrhiza 1(2):55–58CrossRefGoogle Scholar
  35. Popovici J, Comte G, Bagnarol É, Alloisio N, Fournier P, Bellvert F, Bertrand C, Fernandez MP (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 76(8):2451–2460PubMedCrossRefPubMedCentralGoogle Scholar
  36. Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EMH, Albrektsen AS, James EK, Thirup S, Stougaard J (2007) LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26(17):3923–3935PubMedCrossRefPubMedCentralGoogle Scholar
  37. Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P, Downie JA (1999) Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181(12):3816–3823PubMedPubMedCentralGoogle Scholar
  38. Romero M, Muro-Pastor AM, Otero A (2011) Quorum sensing N-acylhomoserine lactone signals affect nitrogen fixation in the cyanobacterium Anabaena sp. PCC7120. FEMS Microbiol Lett 315(2):101–108PubMedCrossRefGoogle Scholar
  39. Rosemeyer V, Michiels J, Verreth C, Vanderleyden J (1998) luxI-and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J Bacteriol 180(4):815–821PubMedPubMedCentralGoogle Scholar
  40. Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Downie JA (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond B Biol Sci 362(1483):1149–1163PubMedCrossRefPubMedCentralGoogle Scholar
  41. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13(6):637–648PubMedCrossRefGoogle Scholar
  42. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  43. Wisniewski-Dyé F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81(1–4):397–407PubMedCrossRefGoogle Scholar
  44. Wisniewski-Dye F, Jones J, Chhabra S, Downie J (2002) raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 184(6):1597–1606PubMedCrossRefPubMedCentralGoogle Scholar
  45. Wood DW, Gong F, Daykin MM, Williams P, Pierson L (1997) N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179(24):7663–7670PubMedPubMedCentralGoogle Scholar
  46. Zheng H, Zhong Z, Lai X, Chen W-X, Li S, Zhu J (2006) A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. J Bacteriol 188(5):1943–1949PubMedCrossRefPubMedCentralGoogle Scholar
  47. Zhuang X, Gao J, Ma A, Fu S, Zhuang G (2013) Bioactive molecules in soil ecosystems: masters of the underground. Int J Mol Sci 14(5):8841–8868PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Jie Gao
    • 1
  • Anzhou Ma
    • 1
  • Xuliang Zhuang
    • 1
  • Guoqiang Zhuang
    • 1
  1. 1.Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations