Quorum Sensing in Pathogenesis and Virulence

  • Pragasam Viswanathan
  • Suneeva S. C. 
  • Prasanth Rathinam


The bacterial species have co-evolved with the human race and account for more than 3,000 distinct species of which most are beneficial to the humans. They are a few micrometres in length and outnumber the eukaryotic cells by a ratio of 10,000:1. They have evolved their own strategies for countering the defences of the human host. Pathogenicity of microorganisms is through the expression of the virulence factors, which could be attributed to their genetic or biochemical or structural features, which are responsible for the organism to cause an infection in the host (Oelschlaeger et al. 2002). The dynamic relationship between the host and pathogen is an outcome of the virulence of the pathogen and the resistance or susceptibility of the host to the invading pathogen (Casadevall and Pirofski 2000).


Sialic Acid Lyme Disease Quorum Sense Quorum Sense System Homoserine Lactone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almagro-Moreno S, Boyd EF (2009a) Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 9:118PubMedCrossRefPubMedCentralGoogle Scholar
  2. Almagro-Moreno S, Boyd EF (2009b) Sialic acid catabolism confers a competitive advantage to pathogenic in the Vibrio cholerae mouse intestine. Infect Immun 77:3807–3816PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301(5629):105–107PubMedCrossRefGoogle Scholar
  4. Antunez-Lamas M et al (2009) Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937). Microbiology 155:434–442PubMedCrossRefGoogle Scholar
  5. Autret N, Raynaud C, Dubail I, Berche P, Charbit A (2003) Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun 71:4463–4471PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bohdanowicz M, Cosio G, Backer JM, Grinstein S (2010) Class I and class III phosphoinositide 3-Kinases are required for actin polymerization that propels phagosomes. J Cell Biol 191(5):999–1012PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L, Henry C, Gohar M, Declerck N, Lereclus D (2008) Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 36:3791–3801PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bower JM, Gordon-Raagas HB, Mulvey MA (2009) Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. Infect Immun 77:2104–2112PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brodsky IE, Medzhitov R (2009) Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11:521–526PubMedCrossRefGoogle Scholar
  11. Brown SP et al (2012) Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:336–342PubMedCrossRefPubMedCentralGoogle Scholar
  12. Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H et al (2010) Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol 6:41–45PubMedCrossRefGoogle Scholar
  13. Casadevall A, Pirofski LA (2000) Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun 68:6511–6518PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen G, Swem LR, Swem DL, Stauff DL, O’Loughlin CT, Jeffrey PD et al (2011) A strategy for antagonizing quorum sensing. Mol Cell 42:199–209PubMedCrossRefPubMedCentralGoogle Scholar
  15. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344PubMedCrossRefPubMedCentralGoogle Scholar
  16. Duclos S, Desjardins M (2000) Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol 2:365–377PubMedCrossRefGoogle Scholar
  17. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468PubMedCrossRefGoogle Scholar
  19. Galen JE et al (1992) Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect Immun 60(2):406–415PubMedPubMedCentralGoogle Scholar
  20. Geisinger E, Adhikari RP, Jin R, Ross HF, Novick RP (2006) Inhibition of rot translation by RNAIII, a key feature of agr function. Mol Microbiol 61:1038–1048PubMedCrossRefGoogle Scholar
  21. Giltner CL, Nguyen Y, Burrows LL (2012) Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev 76(4):740–772PubMedCrossRefPubMedCentralGoogle Scholar
  22. Godaly G, Bergsten G, Frendéus B et al (2000) Innate defences and resistance to gram-negative mucosal infection. Adv Exp Med Biol 485:9–24PubMedCrossRefGoogle Scholar
  23. Groisman EA (1994) How bacteria resist killing by host defence peptides. Trends Microbiol 2:444–449PubMedCrossRefGoogle Scholar
  24. Johnson JR, Russo TA (2002) Extra-intestinal pathogenic Escherichia coli: “the other bad E. coli”. J Lab Clin Med 139:155–162PubMedCrossRefGoogle Scholar
  25. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33(2):376–393PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904PubMedCrossRefGoogle Scholar
  27. Kuehn MJ (1997) Establishing communications via gram-negative bacterial pili. Trends Microbiol 5:130–135PubMedCrossRefGoogle Scholar
  28. Kung F, Anguita J, Pal U (2013) Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 8:41–56PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lievin-Le Moal V, Servin AL (2006) The front line of enteric host defence against unwelcome intrusion of harmful micro-organisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19:315–337PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lina G, Jarraud S, Ji G, Greenland T, Pedraza A, Etienne J, Novick RP, Vandenesch F (1998) Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol Microbiol 28:655–662PubMedCrossRefGoogle Scholar
  31. Lu N, Zhou Z (2012) Membrane trafficking and phagosome maturation during the clearance of apoptotic cells. Int Rev Cell Mol Biol 293:269–309PubMedCrossRefPubMedCentralGoogle Scholar
  32. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type 1 pilus mediated bacterial invasion of bladder epithelial cells. EMBO J 19(12):2803–2812PubMedCrossRefPubMedCentralGoogle Scholar
  33. Massey RC, Horsburgh MJ, Lina G, Hook M, Recker M (2006) The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? Nat Rev Microbiol 4:953–958PubMedCrossRefGoogle Scholar
  34. Mena KD, Gerba CP (2009) Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol 201:71–115PubMedGoogle Scholar
  35. Mulvey MA (2002) Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4(5):257–271PubMedCrossRefGoogle Scholar
  36. Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ (2000) Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defences. Proc Natl Acad Sci U S A 97(16):8829–8835PubMedCrossRefPubMedCentralGoogle Scholar
  37. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222PubMedCrossRefGoogle Scholar
  38. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975PubMedPubMedCentralGoogle Scholar
  39. Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248:446–458PubMedCrossRefGoogle Scholar
  40. Oelschlaeger TA, Dobrindt U, Hacker J (2002) Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int J Antimicrob Agents 19(6):517–521PubMedCrossRefGoogle Scholar
  41. Ohtani K, Yuan Y, Hassan S, Wang R, Wang Y, Shimizu T (2009) Virulence gene regulation by the agr system in Clostridium perfringens. J Bacteriol 191:3919–3927PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ouyang Z, He M, Oman T, Yang XF, Norgard MV (2009) A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc Natl Acad Sci U S A 106:3449–3454PubMedCrossRefPubMedCentralGoogle Scholar
  43. Pastorello I, Paccani SR, Rosini R, Mettera R, Navarro F et al (2013) EsiB, a novel pathogenic Escherichia coli secretory immunoglobulin A-binding protein impairing neutrophil activation. MBio 4(4):e00206–e00213PubMedCrossRefPubMedCentralGoogle Scholar
  44. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210PubMedPubMedCentralGoogle Scholar
  45. Peterson S, Cline RT, Tettelin H, Sharov V, Morrison DA (2000) Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J Bacteriol 182:6192–6202PubMedCrossRefPubMedCentralGoogle Scholar
  46. Platt TG, Fuqua C (2010) What’s in a name? The semantics of quorum sensing. Trends Microbiol 18:383–387PubMedCrossRefPubMedCentralGoogle Scholar
  47. Podbielski A, Kreikemeyer B (2004) Cell density-dependent regulation: basic principles and effects on the virulence of Gram-positive cocci. Int J Infect Dis 8:81–95PubMedCrossRefGoogle Scholar
  48. Riedel CU, Monk IR, Casey PG, Waidmann MS, Gahan CG, Hill C (2009) AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 71:1177–1189PubMedCrossRefGoogle Scholar
  49. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427PubMedCrossRefGoogle Scholar
  50. Schmitt CK, Meysick KC, O’Brien AD (1999) Bacterial toxins: friends or foes? Emerg Infect Dis 5(2):224–235PubMedCrossRefPubMedCentralGoogle Scholar
  51. Schuster M, Greenberg EP (2007) Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 8:287PubMedCrossRefPubMedCentralGoogle Scholar
  52. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079PubMedCrossRefPubMedCentralGoogle Scholar
  53. Schuster M, Urbanowski ML, Greenberg EP (2004) Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci USA 101:15833–15839PubMedCrossRefPubMedCentralGoogle Scholar
  54. Seed PC, Passador L, Iglewski BH (1995) Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177:654–659PubMedPubMedCentralGoogle Scholar
  55. Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949PubMedCrossRefPubMedCentralGoogle Scholar
  56. Smith H (1998) What happens to bacterial pathogens in vivo? Trends Microbiol 6:239–241PubMedCrossRefGoogle Scholar
  57. Terao Y, Mori Y, Yamaguchi M, Shimizu Y, Ooe K, Hamada S, Kawabata S (2008) Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity. J Biol Chem 283:6253–6260PubMedCrossRefGoogle Scholar
  58. Thoendel M, Horswill AR (2010) Biosynthesis of peptide signals in gram-positive bacteria. Adv Appl Microbiol 71:91–112PubMedCrossRefGoogle Scholar
  59. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signaling in the staphylococci. Chem Rev 111:117–151PubMedCrossRefPubMedCentralGoogle Scholar
  60. Tomme P, Warren RA, Miller RC et al (1995) Cellulose binding domains: classification and properties. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates. American Chemical Society, Washington, DC, pp 42–161Google Scholar
  61. Whittaker JW (2012) Non-heme manganese catalase – the other catalase. Arch Biochem Biophys 525(2):111–120PubMedCrossRefPubMedCentralGoogle Scholar
  62. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938PubMedCrossRefGoogle Scholar
  63. Yarwood JM, McCormick JK, Schlievert PM (2001) Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol 183:1113–1123PubMedCrossRefPubMedCentralGoogle Scholar
  64. Yoshiyama H, Nakazawa T (2000) Unique mechanism of Helicobacter pylori for colonizing the gastric mucus. Microbes Infect 2:55–60PubMedCrossRefGoogle Scholar
  65. Zemanick ET, Sagel SD, Harris JK (2011) The airway microbiome in cystic fibrosis and implications for treatment. Curr Opin Pediatr 23:319–324PubMedCrossRefGoogle Scholar
  66. Zhu J, Winans SC (1999) Autoinducer binding by the quorum- sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc Natl Acad Sci USA 96:4832–4837PubMedCrossRefPubMedCentralGoogle Scholar
  67. Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signalling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci USA 98:1507–1512PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Pragasam Viswanathan
    • 1
  • Suneeva S. C. 
    • 1
  • Prasanth Rathinam
    • 1
  1. 1.Renal Research Laboratory, Centre for Bio Medical Research, School of Bio Sciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations