The Battle: Quorum-Sensing Inhibitors Versus Evolution of Bacterial Resistance

  • Vipin C. Kalia
  • Prasun Kumar


During the last few centuries, human beings had high mortality and morbidity rate. At times, a large population was completely wiped away. Although these were ‘diagnosed’ to be caused by bacterial infections, however, in the absence of any effective treatment, people helplessly watched the patient dying. The discovery of antibiotics in the twentieth century brought a revolution in human health. Microbial infections in human beings could be treated through the regular and at times indiscriminate administration of antibiotics (Davies et al. 2006). Today, bacteria have developed resistance to quite a few antibiotics (Davies and Davies 2010). Pharmaceutical companies are hesitant to invest in searching novel antibiotics. The scenario is further exacerbated by infections caused by biofilm-forming bacteria. This structure provides additional resistance to antibiotics. One needs up to 1,000 higher doses of antibiotics for dispersing the biofilm (Nadell et al. 2008). Biofilms are formed through the phenomenon known as quorum sensing (QS). QS operates through a wide range of signal molecules, the most widely reported being oligopeptides and acylhomoserine lactones (AHLs) (McDougald et al. 2007). At low cell densities bacteria continue to multiply silently and are able to evade the host’s defence (Hentzer et al. 2003). Hence, while the infection is spreading, the ‘patient’ does not realize their presence. At high cell densities, bacteria activate their arsenal of virulence, and the disease spreads so rapidly that the patient is taken by surprise. At this stage, antibiotic therapy does not function effectively. It was realized that disrupting the QS system may help to let bacteria grow without getting into virulence mode. Quite a bit of effort has gone into searching quorum-sensing inhibitors (QSIs).


Efflux Pump Quorum Sense Quorum Sense System Acylhomoserine Lactone Quorum Sense Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), CSIR-INDEPTH (BSC0111), and the Government of India for providing the necessary funds and facilities. PK is thankful to CSIR for granting Senior Research Fellowship.


  1. Aendekerk S, Ghysels B, Cornelis P, Baysse C (2002) Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:2371–2381PubMedGoogle Scholar
  2. Allen RC, Popat R, Diggle SP, Brown SP (2014) Targeting virulence: can we make evolution- proof drugs? Nat Rev Microbiol 12:300–308. doi: 10.1038/nrmicro3232 PubMedCrossRefGoogle Scholar
  3. Antunes L, Caetano M, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282. doi: 10.1099/mic.0.038794-0 PubMedCrossRefGoogle Scholar
  4. Bakkiyaraj D, Sivasankar C, Pandian SK (2013) Anti-pathogenic potential of coral associated bacteria isolated from Gulf of Mannar against Pseudomonas aeruginosa. Indian J Microbiol 53:111–113. doi: 10.1007/s12088-012-0342-3 PubMedCrossRefPubMedCentralGoogle Scholar
  5. Buckling A, Brockhurst MA (2008) Kin selection and the evolution of virulence. Heredity 100:484–488. doi: 10.1038/sj.hdy.6801093 PubMedCrossRefGoogle Scholar
  6. Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–349. doi: 10.1038/ismej.2008.13 PubMedCrossRefGoogle Scholar
  7. Chu W, Liu Y, Jiang Y, Zhu W, Zhuang X (2013) Production of N-acyl homoserine lactones and virulence factors of waterborne Aeromonas hydrophila. Indian J Microbiol 53:264–268. doi: 10.1007/s12088-013-0381-4 PubMedCrossRefPubMedCentralGoogle Scholar
  8. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. doi: 10.1128/MMBR.00016-10 PubMedCrossRefPubMedCentralGoogle Scholar
  9. Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453. doi: 10.1016/j.mib.2006.08.006 PubMedCrossRefGoogle Scholar
  10. Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80. doi: 10.1016/j.tim.2009.12.008 PubMedCrossRefGoogle Scholar
  11. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2008) Quorum sensing and quorum quenching in Vibrio harveyi lessons learned from in vivo work. ISME J 2:19–26. doi: 10.1038/ismej.2007.92 PubMedCrossRefGoogle Scholar
  12. Defoirdt T, Boon N, Bossier P (2010) Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog 6:e1000989. doi: 10.1371/journal.ppat.1000989 PubMedCrossRefPubMedCentralGoogle Scholar
  13. Defoirdt T, Brackman G, Coenye T (2013) Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 21:619–624. doi: 10.1016/j.tim.2013.09.006 PubMedCrossRefGoogle Scholar
  14. Dembitsky VM, Al Quntar AAA, Srebnik M (2011) Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 111:209–237. doi: 10.1021/cr100093b PubMedCrossRefGoogle Scholar
  15. Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414. doi: 10.1038/nature06279 PubMedCrossRefGoogle Scholar
  16. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67. doi: 10.1021/cr100109t PubMedCrossRefGoogle Scholar
  17. García-Contreras R, Martinez-Vazquez M, Velazquez Guadarrama N, Villegas Paneda AG, Hashimoto T, Maeda T, Quezada H, Wood TK (2013) Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog Dis 68:8–11. doi: 10.1111/2049-632X.12039 PubMedCrossRefGoogle Scholar
  18. Geske GD, O’Neill JC, Blackwell HE (2008) Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem Soc Rev 37:1432–1447. doi: 10.1039/b703021p PubMedCrossRefPubMedCentralGoogle Scholar
  19. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622PubMedPubMedCentralGoogle Scholar
  20. Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027. doi: 10.1038/nature02744 PubMedCrossRefGoogle Scholar
  21. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Høiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815. doi: 10.1093/emboj/cdg366 PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175. doi: 10.1038/nature03912 PubMedCrossRefGoogle Scholar
  23. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65. doi: 10.1128/MMBR.05007-11 PubMedCrossRefGoogle Scholar
  24. Joelsson A, Liu Z, Zhu J (2006) Genetic and phenotypic diversity of quorum–sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect Immun 74:1141–1147. doi: 10.1128/IAI.74.2.1141-1147.2006 PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi: 10.1016/j.biotechadv.2012.10.004 PubMedCrossRefGoogle Scholar
  26. Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. doi: 10.1007/s12088-013-0443-7 PubMedCrossRefGoogle Scholar
  27. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. doi: 10.3109/1040841X.2010.532479 PubMedCrossRefGoogle Scholar
  28. Kalia VC, Rani A, Lal S, Cheema S, Raut CP (2007) Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov 2:211–224. doi: 10.1517/17460441.2.2.211 PubMedCrossRefGoogle Scholar
  29. Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. doi: 10.1007/s00248-013-0316-y PubMedCrossRefGoogle Scholar
  30. Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222. doi: 10.1128/JB.183.18.5213-5222.2001 PubMedCrossRefPubMedCentralGoogle Scholar
  31. Köhler T, Perron GG, Buckling A, van Delden C (2010) Quorum sensing inhibitors selects for virulence and co-operation in Pseudomonas aeruginosa. PLoS Pathog 6:e1000883. doi: 10.1371/journal.ppat.1000883 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 PubMedCrossRefGoogle Scholar
  33. Lal S, Cheema S, Kalia VC (2008) Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 48:228–242. doi: 10.1007/s12088-008-0034-1 PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ledgham F, Ventre I, Soscia C, Foglino M, Strugis JN, Lazdunski A (2003) Interaction of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol 48:199–210. doi: 10.1046/j.1365-2958.2003.03423.x PubMedCrossRefGoogle Scholar
  35. Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR, Tomás M, Wood TK (2012) Quorum quenching quandary: resistance to antivirulence compounds. ISME J 6:493–501. doi: 10.1038/ismej.2011.122 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Mattmann ME, Blackwell HE (2010) Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J Org Chem 75:6737–6746. doi: 10.1021/j0101237e PubMedCrossRefPubMedCentralGoogle Scholar
  37. McDougald D, Rice SA, Kjelleberg S (2007) Bacterial quorum sensing and interference by naturally occurring biomimics. Anal Bioanal Chem 387:445–453. doi: 10.1007/s00216-006-0761-2 PubMedCrossRefGoogle Scholar
  38. Mellbye B, Schuster M (2011) The sociomicrobiology of antivirulence drug resistance: a proof of concept. mBio 2:e00131–11. doi: 10.1128/mBio.00131-11 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Mikkelsen H, Bond NJ, Skindersoe ME, Givskov M, Lilley KS, Welch M (2009) Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa. Microbiology 155:687–698. doi: 10.1099/mic.0.025551-0 PubMedCrossRefGoogle Scholar
  40. Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 16:e14. doi: 10.1371/journal.pbio.0060014 CrossRefGoogle Scholar
  41. Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phytochemicals. Int J Mol Sci 14:12607–12619. doi: 10.3390/ijms140612607 PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. doi: 10.1146/annurev-genet-102108-134304 PubMedCrossRefGoogle Scholar
  43. Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1:201–210PubMedCrossRefPubMedCentralGoogle Scholar
  44. Otto M (2004) Quorum-sensing control in Staphylococci – a target for antimicrobial drug therapy? FEMS Microbiol Lett 241:135–141. doi: 10.1016/j.femsle.2004.11.016 PubMedCrossRefGoogle Scholar
  45. Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51. doi: 10.1093/jac/dki171 PubMedCrossRefGoogle Scholar
  46. Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68:4457–4464. doi: 10.1128/AEM.68.9.4457-4464.2002 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, Venturi V, Zennaro E, Leoni L (2007) RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 66:1557–1565. doi: 10.1111/j.1365-2958.2007.06029x PubMedCrossRefGoogle Scholar
  48. Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors: a bargain of effects. Microbiology 152:895–904. doi: 10.1016/j.fitote.2007.03.009 PubMedCrossRefGoogle Scholar
  49. Rosemeyer V, Michiels J, Verreth C, Vanderleyden J (1998) luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J Bacteriol 180:815–821PubMedPubMedCentralGoogle Scholar
  50. Rumbaugh KP, Diggle SP, Watters CM, Gillespie AR, Griffin AS, West SA (2009) Quorum sensing and the social evolution of bacterial virulence. Curr Biol 19:341–345. doi: 10.1016/j.cub.2009.01.050 PubMedCrossRefGoogle Scholar
  51. Sandoz KM, Mitzimberg SM, Schuster M (2007) Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 104:15876–15881. doi: 10.1073/pnas.0705653104 PubMedCrossRefPubMedCentralGoogle Scholar
  52. Schuster M, Sexton DJ, Diggle SP, Greenberg EP (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63. doi: 10.1146/annurev-micro-092412-155635 PubMedCrossRefGoogle Scholar
  53. Scutera S, Zucca M, Savoia D (2014) Novel approaches for the design and discovery of quorum-sensing inhibitors. Expert Opin Drug Discov 9:353–366. doi: 10.1517/17460441.2014.894974 PubMedCrossRefGoogle Scholar
  54. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Cámara M, Williams P, Quax WJ (2006) Quorum quenching by an N-Acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74:1673–1682PubMedCrossRefPubMedCentralGoogle Scholar
  55. Skindersoe ME, Zeuthen LH, Brix S, Fink LN, Lazenby J, Whittall C, Williams P, Diggle SP, Froekiaer H, Cooley M, Givskov M (2009) Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol Med Microbiol 55:335–345. doi: 10.1111/j.1574-695X.2008.00533.x PubMedCrossRefGoogle Scholar
  56. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648. doi: 10.1094/MPMI.2000.13.6.637 PubMedCrossRefGoogle Scholar
  57. Tinh NTN, Dung NV, Trung CT, Thuy VT (2013) In vitro characterization of a recombinant AHL-Lactonase from Bacillus cereus isolated from a striped catfish (Pangasianodon hypophthalmus) Pond. Indian J Microbiol 53:485–487. doi: 10.1007/s12088-013-0415-y PubMedCrossRefGoogle Scholar
  58. Walters M, Sperandio V (2006) Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol 296:125–131. doi: 10.1073/pnas.96.4.1639 PubMedCrossRefGoogle Scholar
  59. West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607. doi: 10.1038/nrmicro1461 PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Microbial Biotechnology and GenomicsCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations