Skip to main content

Biofilms: Maintenance, Development, and Disassembly of Bacterial Communities Are Determined by QS Cascades

  • Chapter
  • First Online:
Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight

Abstract

Unicellular organisms use a variety of mechanisms to coordinate activity within communities, called biofilms, and across species to accomplish complex multicellular processes (Aguilar et al., Curr Opin Microbiol 10:638–643, 2007; Kolter and Greenberg, Nature 441:300–302, 2006; Miller and Bassler, Annu Rev Microbiol 55:165–199, 2001; Stoodley et al., Annu Rev Microbiol 56:187–209, 2002). Informed by chemical communication, motile cells of the Bacillus subtilis and filamentous cells of the Streptomycetes organize themselves into conspicuous multicellular structures that carry out specialized tasks in spore formation and dispersal. Furthermore, most bacteria have evolved elaborate mechanisms for adhering to solid surfaces and thereby establishing complex communities referred to as biofilms. Importantly, QS cascades are essential for the formation of bacterial multicellular communities and complex biofilms. This chapter focuses on the major QS systems, playing an active role in the rise of complex bacterial communities in different bacterial models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar C, Vlamakis H, Losick R, Kolter R (2007) Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10:638–643

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    PubMed  CAS  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin a crystalline peptidelipid surfactant produced by Bacillus Subtilis – isolation characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Google Scholar 

  • Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076–11081

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baron SS, Rowe JJ (1981) Antibiotic action of pyocyanin. Antimicrob Agents Chemother 20:814–820

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    PubMed  CAS  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110:E1621–1630

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JAJ, Hougen HP, Calum H, Madsen KG, Moser C, Molin S et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383

    PubMed  CAS  Google Scholar 

  • Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052

    PubMed  PubMed Central  Google Scholar 

  • Boles BR, Horswill AR (2011) Staphylococcal biofilm disassembly. Trends Microbiol 19:449–455

    PubMed  CAS  PubMed Central  Google Scholar 

  • Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626

    PubMed  CAS  PubMed Central  Google Scholar 

  • Branda SS, Gonzalez-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186:3970–3979

    PubMed  CAS  PubMed Central  Google Scholar 

  • Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    PubMed  CAS  Google Scholar 

  • Britigan BE, Roeder TL, Rasmussen GT, Shasby DM, McCormick ML, Cox CD (1992) Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J Clin Invest 90:2187–2196

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bryers JD (2008) Medical biofilms. Biotechnol Bioeng 100:1–18

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cha M, Hong S, Kang MY, Lee JW, Jang J (2012) Gas-phase removal of biofilms from various surfaces using carbon dioxide aerosols. Biofouling 28:681–686

    PubMed  CAS  Google Scholar 

  • Chai Y, Chu F, Kolter R, Losick R (2008) Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67:254–263

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo JH, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864

    PubMed  PubMed Central  Google Scholar 

  • Collier DN, Anderson L, McKnight SL, Noah TL, Knowles M, Boucher R, Schwab U, Gilligan P, Pesci EC (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. Fems Microbiol Lett 215:41–46

    PubMed  CAS  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    PubMed  CAS  Google Scholar 

  • Dai L, Yang L, Parsons C, Findlay VJ, Molin S, Qin ZQ (2012) Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and “self-renewal” through downregulation of agr. BMC Microbiol 12:102

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    PubMed  CAS  Google Scholar 

  • De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873

    PubMed  PubMed Central  Google Scholar 

  • Deziel E, Gopalan S, Tampakaki AP, Lepine F, Padfield KE, Saucier M, Xiao G, Rahme LG (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55:998–1014

    PubMed  CAS  Google Scholar 

  • Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321

    PubMed  CAS  Google Scholar 

  • Dietrich LE, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dietrich LE, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195:1371–1380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43

    PubMed  CAS  Google Scholar 

  • Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8:1095–1104

    PubMed  CAS  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    PubMed  CAS  Google Scholar 

  • Ellermeier CD, Hobbs EC, Gonzalez-Pastor JE, Losick R (2006) A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124:549–559

    PubMed  CAS  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781

    PubMed  CAS  Google Scholar 

  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135

    PubMed  PubMed Central  Google Scholar 

  • Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1301

    PubMed  CAS  PubMed Central  Google Scholar 

  • Foreman A, Jervis-Bardy J, Boase SJ, Tan L, Wormald PJ (2013) Noninvasive Staphylococcus aureus biofilm determination in chronic rhinosinusitis by detecting the exopolysaccharide matrix component poly-N-acetylglucosamine. Int Forum Allergy Rhinol 3:83–88

    PubMed  Google Scholar 

  • Fujita M, Gonzalez-Pastor JE, Losick R (2005) High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 187:1357–1368

    PubMed  CAS  PubMed Central  Google Scholar 

  • Glasser NR, Kern SE, Newman DK (2014) Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol 92:399–412

    PubMed  CAS  Google Scholar 

  • Gonzalez-Pastor JE, Hobbs EC, Losick R (2003) Cannibalism by sporulating bacteria. Science 301:510–513

    PubMed  CAS  Google Scholar 

  • Guina T, Purvine SO, Yi EC, Eng J, Goodlett DR, Aebersold R, Miller SI (2003) Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci U S A 100:2771–2776

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ha C, Park SJ, Im SJ, Park SJ, Lee JH (2012) Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol Cells 33:53–59

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104

    PubMed  CAS  Google Scholar 

  • Hays EE, Wells IC, Katzman PA, Cain CK, Jacobs FA, Thayer SA, Doisy EA, Gaby WL, Roberts EC, Muir RD et al (1945) Antibiotic substances produced by Pseudomonas Aeruginosa. J Biol Chem 159:725–750

    CAS  Google Scholar 

  • Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186:6902–6914

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N et al (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102

    PubMed  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P et al (2003a) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P et al (2003b) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    PubMed  CAS  PubMed Central  Google Scholar 

  • Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883

    PubMed  CAS  Google Scholar 

  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749

    PubMed  CAS  Google Scholar 

  • Kelly RC, Bolitho ME, Higgins DA, Lu W, Ng WL, Jeffrey PD, Rabinowitz JD, Semmelhack MF, Hughson FM, Bassler BL (2009) The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat Chem Biol 5:891–895

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kempes CP, Okegbe C, Mears-Clarke Z, Follows MJ, Dietrich LE (2014) Morphological optimization for access to dual oxidants in biofilms. Proc Natl Acad Sci U S A 111:208–213

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kirisits MJ, Parsek MR (2006) Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8:1841–1849

    PubMed  CAS  Google Scholar 

  • Kluge B, Vater J, Salnikow J, Eckart K (1988) Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus-subtilis Atcc-21332. FEBS Lett 231:107–110

    PubMed  CAS  Google Scholar 

  • Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M (2005) The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology 151:3589–3602

    PubMed  CAS  Google Scholar 

  • Kolodkin-Gal I, Elsholz AK, Muth C, Girguis PR, Kolter R, Losick R (2013) Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev 27:887–899

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302

    PubMed  CAS  Google Scholar 

  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    PubMed  CAS  Google Scholar 

  • Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606

    PubMed  CAS  Google Scholar 

  • Ledgham F, Ventre I, Soscia C, Foglino M, Sturgis JN, Lazdunski A (2003) Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol 48:199–210

    PubMed  CAS  Google Scholar 

  • Lee SH, Hava DL, Waldor MK, Camilli A (1999) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99:625–634

    PubMed  CAS  Google Scholar 

  • Lepine F, Deziel E, Milot S, Rahme LG (2003) A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta 1622:36–41

    PubMed  CAS  Google Scholar 

  • Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187:37–44

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lequette Y, Lee JH, Ledgham F, Lazdunski A, Greenberg EP (2006) A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol 188:3365–3370

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lintz MJ, Oinuma K, Wysoczynski CL, Greenberg EP, Churchill ME (2011) Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci U S A 108:15763–15768

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lombardia E, Rovetto AJ, Arabolaza AL, Grau RR (2006) A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis. J Bacteriol 188:4442–4452

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez D, Fischbach MA, Chu F, Losick R, Kolter R (2009a) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci U S A 106:280–285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez D, Vlamakis H, Kolter R (2009b) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33:152–163

    PubMed  CAS  Google Scholar 

  • Lopez D, Vlamakis H, Losick R, Kolter R (2009c) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez D, Vlamakis H, Losick R, Kolter R (2009d) Paracrine signaling in a bacterium. Genes Dev 23:1631–1638

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mack D, Siemssen N, Laufs R (1992) Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun 60:2048–2057

    PubMed  CAS  PubMed Central  Google Scholar 

  • Magnuson R, Solomon J, Grossman AD (1994) Biochemical and genetic-characterization of a competence pheromone from Bacillus-subtilis. Cell 77:207–216

    PubMed  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    PubMed  CAS  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS 3rd (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  PubMed Central  Google Scholar 

  • McDowell P, Affas Z, Reynolds C, Holden MTG, Wood SJ, Saint S, Cockayne A, Hill PJ, Dodd CER, Bycroft BW et al (2001) Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus. Mol Microbiol 41:503–512

    CAS  Google Scholar 

  • McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11:33–44

    PubMed  CAS  Google Scholar 

  • McLoon AL, Kolodkin-Gal I, Rubinstein SM, Kolter R, Losick R (2011) Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J Bacteriol 193:679–685

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    PubMed  CAS  Google Scholar 

  • Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314

    PubMed  CAS  Google Scholar 

  • Moker N, Dean CR, Tao J (1946–1955) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol(192)

    Google Scholar 

  • Nagorska K, Bikowski M, Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54:495–508

    PubMed  CAS  Google Scholar 

  • Ng WL, Bassler BL (2009a) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    PubMed  CAS  Google Scholar 

  • Ng WL, Bassler BL (2009b) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    PubMed  CAS  Google Scholar 

  • Ng WL, Perez LJ, Wei Y, Kraml C, Semmelhack MF, Bassler BL (2011) Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol Microbiol 79:1407–1417

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci U S A 97:10231–10235

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oinuma K, Greenberg EP (2011) Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR. J Bacteriol 193:421–428

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okegbe C, Price-Whelan A, Dietrich LE (2014) Redox-driven regulation of microbial community morphogenesis. Curr Opin Microbiol 18C:39–45

    Google Scholar 

  • Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I (2013) Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol 21(11):594–601

    PubMed  CAS  Google Scholar 

  • Perez LJ, Ng WL, Marano P, Brook K, Bassler BL, Semmelhack MF, Perez LJ, Ng WL, Marano P, Brook K, Bassler BL, Semmelhack MF (2012) Role of the CAI-1 fatty acid tail in the Vibrio cholerae quorum sensing response. J Med Chem 55(22):9669–81

    PubMed  CAS  PubMed Central  Google Scholar 

  • Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, Cheung GY, Otto M (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109:1281–1286

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999a) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999b) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234

    PubMed  CAS  PubMed Central  Google Scholar 

  • Price-Whelan A, Dietrich LE, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78

    PubMed  CAS  Google Scholar 

  • Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68:4457–4464

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ray VA, Visick KL (2012) LuxU connects quorum sensing to biofilm formation in Vibrio fischeri. Mol Microbiol 86:954–970

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roche FM, Meehan M, Foster TJ (2003) The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149:2759–2767

    PubMed  CAS  Google Scholar 

  • Roggiani M, Dubnau D (1993) Coma, a phosphorylated response regulator protein of Bacillus-subtilis, binds to the promoter region of Srfa. J Bacteriol 175:3182–3187

    PubMed  CAS  PubMed Central  Google Scholar 

  • Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107:2230–2234

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rubinstein SM, Kolodkin-Gal I, McLoon A, Chai L, Kolter R, Losick R, Weitz DA (2012) Osmotic pressure can regulate matrix gene expression in Bacillus subtilis. Mol Microbiol 86:426–436

    PubMed  CAS  Google Scholar 

  • Sadikot RT, Blackwell TS, Christman JW, Prince AS (2005) Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 171:1209–1223

    PubMed  PubMed Central  Google Scholar 

  • Sanchez C (2011) Microbial ecology: bacteria reinforce plant defences. Nat Rev Microbiol 9:483

    PubMed  CAS  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003a) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003b) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sheppard JD, Jumarie C, Cooper DG, Laprade R (1991) Ionic channels induced by surfactin in planar lipid bilayer-membranes. Biochim Biophys Acta 1064:13–23

    PubMed  CAS  Google Scholar 

  • Shibata S, Yip ES, Quirke KP, Ondrey JM, Visick KL (2012) Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. J Bacteriol 194:6736–6747

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    PubMed  CAS  Google Scholar 

  • Tegmark K, Morfeldt E, Arvidson S (1998) Regulation of agr-dependent virulence genes in Staphylococcus aureus by RNAIII from coagulase-negative staphylococci. J Bacteriol 180:3181–3186

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger KE (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323

    PubMed  CAS  Google Scholar 

  • Tischler AD, Camilli A (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53:857–869

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsompanidou E, Sibbald MJ, Chlebowicz MA, Dreisbach A, Back JW, van Dijl JM, Buist G, Denham EL (2011) Requirement of the agr locus for colony spreading of Staphylococcus aureus. J Bacteriol 193:1267–1272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wagner-Dobler I, Thiel V, Eberl L, Allgaier M, Bodor A, Meyer S, Ebner S, Hennig A, Pukall R, Schulz S (2005) Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chembiochem 6:2195–2206

    PubMed  Google Scholar 

  • Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192:365–369

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193:3606–3617

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181:3606–3609

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wei Y, Perez LJ, Ng WL, Semmelhack MF, Bassler BL (2011) Mechanism of Vibrio cholerae autoinducer-1 biosynthesis. ACS Chem Biol 6:356–365

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wells IC (1952) Antibiotic substances produced by Pseudomonas aeruginosa; syntheses of Pyo Ib, Pyo Ic, and Pyo III. J Biol Chem 196:331–340

    PubMed  CAS  Google Scholar 

  • Wells IC, Elliott WH, Thayer SA, Doisy EA (1952) Ozonization of some antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem 196:321–330

    PubMed  CAS  Google Scholar 

  • Weng LX, Yang YX, Zhang YQ, Wang LH (2014) A new synthetic ligand that activates QscR and blocks antibiotic-tolerant biofilm formation in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 98:2565–2572

    PubMed  CAS  Google Scholar 

  • Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153:1318–1328

    PubMed  CAS  Google Scholar 

  • Yang L, Nilsson M, Gjermansen M, Givskov M, Tolker-Nielsen T (2009) Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Mol Microbiol 74:1380–1392

    PubMed  CAS  Google Scholar 

  • Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 96:4028–4033

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17:109–118

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yip ES, Geszvain K, DeLoney-Marino CR, Visick KL (2006) The symbiosis regulator rscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol Microbiol 62:1586–1600

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5:647–656

    PubMed  CAS  Google Scholar 

  • Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 99:3129–3134

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Kolodkin-Gal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Ganin, H., Yardeni, E.H., Kolodkin-Gal, I. (2015). Biofilms: Maintenance, Development, and Disassembly of Bacterial Communities Are Determined by QS Cascades. In: Kalia, V. (eds) Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1982-8_3

Download citation

Publish with us

Policies and ethics