Heterologous Expression of Quorum Sensing Inhibitory Genes in Diverse Organisms

  • Prasun Kumar
  • Shikha Koul
  • Sanjay K. S. Patel
  • Jung-Kul Lee
  • Vipin C. Kalia


The discovery of antibiotics was a wonderful solution to provide relief to human beings from infectious diseases. However, indiscriminate usage of antibiotics turned out to be counterproductive. It was observed that patients were not getting cured in spite of the systematic use of antibiotics. In fact, microbes had developed resistance to antibiotics. This perturbation has been in operation even with antibiotics subsequently developed during the next 6–7 decades (D’Costa et al. 2006). Pharmaceutical companies are no longer interested in investing money into this business (Spellberg et al. 2004; Courvalin 2008). It obliged scientists to look for alternative drugs and new drug targets. It was realised that more than 80 % of the infectious diseases are caused by microbial pathogens, through specialised structures – biofilms. It enables bacteria to survive the lethal effect of drugs, as they “become” up to 1,000 times more resistant to antibiotics (Kalia 2013; Gui et al. 2014; Kalia et al. 2014a, b). These biofilms are developed by bacteria in a population density-dependent process called quorum sensing (QS) (Dong and Zhang 2005). Most Gram-negative bacteria operate through a QS system termed as LuxR/I-type, where acylated homoserine lactones (AHLs) acts as signals. QS signals consist of the lactone ring with varying acyl chains (Yang et al. 2012; Shang et al. 2014). QS regulates the expression of virulence factors, antibiotic production, nitrogen fixation, sporulation, conjugation, swarming, etc. (Borlee et al. 2008; Kalia and Purohit 2011; Kalia 2013; Wang et al. 2013; Zhang et al. 2013; Kalia et al. 2014a, b). These properties allow such bacteria to dominate the community structure. It is thus no surprise that the competing organisms have also developed mechanisms to interfere with the QSS and degrade these signals – a phenomenon termed as quorum quenching (QQ) (Kalia and Purohit 2011; Annapoorani et al. 2012; Bakkiyaraj et al. 2013; Kalia 2013; Agarwala et al. 2014).


Horizontal Gene Transfer Quorum Sense Quorum Sense System Acylated Homoserine Lactone Indole Acetic Acid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acyl homoserine lactone




N-hexanoyl HSL


N-octanoyl HSL


N-decanoyl HSL


N-dodecanoyl HSL










3-oxo-N-dodecanoyl- HSL


Homoserine lactone


Quorum sensing


Quorum sensing systems


Quorum quenching



The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), CSIR-INDEPTH (BSC0111), Government of India for providing the necessary funds and facilities. Authors are also thankful to Academy of Scientific and Innovative Research (AcSIR), New Delhi. PK is thankful to CSIR for granting Senior Research Fellowship.


  1. Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol. doi: 10.1007/s12088-014-0462-z PubMedGoogle Scholar
  2. Annapoorani A, Jabbar AKKA, Musthafa SKS, Pandian SK, Ravi AV (2012) Inhibition of quorum sensing mediated virulence factors production in urinary pathogen Serratia marcescens PS1 by marine sponges. Indian J Microbiol 52:160–166. doi: 10.1007/s12088-012-0272-0 PubMedCrossRefPubMedCentralGoogle Scholar
  3. Augustine N, Kumar P, Thomas S (2010) Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Arch Microbiol 192:1019–1022. doi: 10.1007/s00203-010-0633-1 PubMedCrossRefGoogle Scholar
  4. Bai F, Han Y, Chen J, Zhang X-H (2008) Disruption of quorum sensing in Vibrio harveyi by the AiiA protein of Bacillus thuringiensis. Aquaculture 274:36–40. doi: 10.1016/j.aquaculture.2007.11.024 CrossRefGoogle Scholar
  5. Bakkiyaraj D, Sivasankar C, Pandian SK (2013) Anti-pathogenic potential of coral associated bacteria isolated from Gulf of Mannar against Pseudomonas aeruginosa. Indian J Microbiol 53:111–113. doi: 10.1007/s12088-012-0342-3 PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bijtenhoorn P, Mayerhofer H, Müller-Dieckmann J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thürmer A, Brzuszkiewicz E, Daniel R, Dierking K, Schulenburg H, Streit WR (2011) A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 6:e26278. doi: 10.1371/journal.pone.0026278 PubMedCrossRefPubMedCentralGoogle Scholar
  7. Borlee BR, Geske GD, Robinson CJ, Blackwell HE, Handelsman J (2008) Quorum-sensing signals in the microbial community of the cabbage white butterfly larval midgut. ISME J 2:1101–1111. doi: 10.1038/ismej.2008.70 PubMedCrossRefPubMedCentralGoogle Scholar
  8. Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dyé F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159:699–708. doi: 10.1016/j.resmic.2008.08.003 PubMedCrossRefGoogle Scholar
  9. Byers JT, Lucas C, Salmond GP, Welch M (2002) Nonenzymatic turnover of an Erwinia carotovora quorum–sensing signaling molecule. J Bacteriol 184:1163–1171. doi: 10.1128/jb.184.4.1163-1171.2002 PubMedCrossRefPubMedCentralGoogle Scholar
  10. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity. Appl Environ Microbiol 69:4989–4993. doi: 10.1128/AEM.69.8.4989-4993.2003 PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chan KG, Wong CS, Yin WF, Sam CK, Koh CL (2010) Rapid degradation of N-3-oxo-acylhomoserine lactones by a Bacillus cereus isolate from Malaysian rainforest soil. Antonie Van Leeuwenhoek 98:299–305. doi: 10.1007/s10482-010-9438-0 PubMedCrossRefGoogle Scholar
  12. Chen C-N, Chen C-J, Liao C-T, Lee C-Y (2009) A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 9:89. doi: 10.1186/1471-2180-9-89 PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chen R, Zhou Z, Cao Y, Yao B (2010) High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb Cell Fact 9:39PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500. doi: 10.3390/ijms140917477 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chu W, Liu Y, Jiang Y, Zhu W, Zhuang X (2013) Production of N-acyl homoserine lactones and virulence factors of waterborne Aeromonas hydrophila. Indian J Microbiol 53:264–268. doi: 10.1007/s12088-013-0381-4 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci USA 101:3587–3590. doi: 10.1073/pnas.0308750101 PubMedCrossRefPubMedCentralGoogle Scholar
  17. Courvalin P (2008) Predictable and unpredictable evolution of antibiotic resistance. J Intern Med 264:4–16. doi: 10.1111/j.1365-2796.2008.01940.x PubMedCrossRefGoogle Scholar
  18. Czajkowski R, Krzyżanowska D, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, Williams P, Jafra S (2011) Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 3:59–68. doi: 10.1111/j.1758-2229.2010.00188.x PubMedCrossRefGoogle Scholar
  19. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377. doi: 10.1126/science.1120800 PubMedCrossRefGoogle Scholar
  20. Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R, Ruan L, Peng D, Sun M (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J Bacteriol 193:2070–2071. doi: 10.1128/JB.00129-11 PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dong YH, Zhang LH (2005) Quorum sensing and quorum quenching enzymes. J Microbiol 43:101–109PubMedGoogle Scholar
  22. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531. doi: 10.1073/pnas.97.7.3526 PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817. doi: 10.1038/35081101 PubMedCrossRefGoogle Scholar
  24. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759. doi: 10.1128/AEM.68.4.1754-1759.2002 PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960. doi: 10.1128/AEM.70.2.954-960.2004 PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dong YH, Wang LH, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Phil Trans R Soc Lond B Biol Sci 362:1201–1211. doi: 10.1098/rstb.2007.2045 CrossRefGoogle Scholar
  27. Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, LaDu BN (2005) Human paraoxonases (PON1, PON2 and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46:1239–1247. doi: 10.1194/jlr.M400511-JLR200 PubMedCrossRefGoogle Scholar
  28. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468. doi: 10.1146/annurev.genet.35.102401.090913 PubMedCrossRefGoogle Scholar
  29. Godefroid M, Svensson MV, Cambier P, Uzureau S, Mirabella A, De Bolle X, Van Cutsem P, Widmalm G, Letesson JJ (2010) Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm. FEMS Immunol Med Microbiol 59:364–377. doi: 10.1111/j.1574-695X.2010.00689.x PubMedGoogle Scholar
  30. Gui Z, Wang H, Ding T, Zhu W, Zhuang X, Chu W (2014) Azithromycin reduces the production of α-hemolysin and biofilm formation in Staphylococcus aureus. Indian J Microbiol 54:114–117. doi: 10.1007/s12088-013-0438-4 PubMedCrossRefGoogle Scholar
  31. Han Y, Chen F, Li N, Zhu B, Li X (2010) Bacillus marcorestinctum sp. nov., a novel soil acylhomoserine lactone quorum-sensing signal quenching bacterium. Int J Mol Sci 11:507–520. doi: 10.3390/ijms11020507 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hastings JW (2004) Bacterial quorum–sensing signals are inactivated by mammalian cells. Proc Natl Acad Sci U S A 101:3993–3994. doi: 10.1073/pnas.0400874101 PubMedCrossRefPubMedCentralGoogle Scholar
  33. Huang JJ, Han J-I, Zhang L-H, Leadbetter JR (2003) Utilization of acylhomoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949. doi: 10.1128/AEM.69.10.5941-5949.2003 PubMedCrossRefPubMedCentralGoogle Scholar
  34. Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:1190–1197. doi: 10.1128/AEM.72.2.1190-1197.2006 PubMedCrossRefPubMedCentralGoogle Scholar
  35. Huang W, Lin Y, Yi S, Liu P, Shen J, Shao Z, Liu Z (2012) QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261. PLoS One 7:e46587. doi: 10.1371/journal.pone.0046587.t001 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju SC, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. doi: 10.4014/jmb.1105.05056 PubMedCrossRefGoogle Scholar
  37. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi: 10.1016/j.biotechadv.2012.10.004 PubMedCrossRefGoogle Scholar
  38. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. doi: 10.3109/1040841X.2010.532479 PubMedCrossRefGoogle Scholar
  39. Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and -lactonase. Open Microbiol J 5:1–13. doi: 10.2174/187428580110501000 PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kalia VC, Kumar P, Pandian SK, Sharma P (2014a) Biofouling control by quorum quenching. In: Kim SK (ed) Handbook of marine biotechnology. SpringerGoogle Scholar
  41. Kalia VC, Wood TK, Kumar P (2014b) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. doi: 10.1007/s00248-013-0316-y PubMedCrossRefGoogle Scholar
  42. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 PubMedCrossRefGoogle Scholar
  43. Lal S, Cheema S, Kalia VC (2008) Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 48:228–242. doi: 10.1007/s12088-008-0034-1 PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149:833–842. doi: 10.1099/mic.0.26085-0 PubMedCrossRefGoogle Scholar
  45. Leadbetter JR, Greenberg EP (2000) Metabolism of acylhomoserine lactone quorum–sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926. doi: 10.1128/JB.182.24.6921-6926.2000 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK (2002) Genes encoding the N–acyl homoserine lactone–degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68:3919–3924. doi: 10.1128/AEM.68.8.3919-3924.2002 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl–homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum–quenching enzymes. Mol Microbiol 47:849–860. doi: 10.1046/j.1365-2958.2003.03351.x PubMedCrossRefGoogle Scholar
  48. Liu D, Lepore BW, Petsko GA, Thomas PW, Stone EM, Fast W, Ringe D (2005) Three–dimensional structure of the quorum quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc Natl Acad Sci USA 102:11882–11887. doi: 10.1073/pnas.0505255102 PubMedCrossRefPubMedCentralGoogle Scholar
  49. Liu X, Jia J, Popat R, Ortori CA, Li J, Diggle SP, Gao K, Cámara M (2011) Characterization of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life style. BMC Microbiol 11:26. doi: 10.1186/1471-2180-11-26 PubMedCrossRefPubMedCentralGoogle Scholar
  50. Liu CF, Liu D, Momb J, Thomas PW, Lajoie A, Petsko GA, Fast W, Ringe D (2013) A distal phenylalanine clamp in a hydrophobic channel controls the substrate specificity in the quorum-quenching metallo-γ-lactonase (AiiA) from Bacillus thuringiensis. Biochemistry 52:1603–1610. doi: 10.1021/bi400050j PubMedCrossRefPubMedCentralGoogle Scholar
  51. Mahanty A, Mishra S, Bosu R, Maurya UK, Netam SP, Sarkar B (2013) Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian J Microbiol 53:438–446. doi: 10.1007/s12088-013-0409-9 PubMedCrossRefGoogle Scholar
  52. Mei GY, Yan XX, Turak A, Luo ZQ, Zhang LQ (2010) AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol 76:4933–4942. doi: 10.1128/AEM.00477-10 PubMedCrossRefPubMedCentralGoogle Scholar
  53. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81. doi: 10.1016/S0168-6496(03)00125-9 PubMedCrossRefGoogle Scholar
  54. Morohoshi T, Ebata A, Nakazawa S, Kato N, Ikeda T (2005) N-acyl homoserine lactone–producing or –degrading bacteria isolated from the intestinal microbial flora of Ayu fish (Plecoglossus altivelis). Microb Environ 20:264–268. doi: 10.1264/jsme2.20.264 CrossRefGoogle Scholar
  55. Morohoshi T, Nakazawa S, Ebata A, Kato N, Ikeda T (2008) Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015. Biosci Biotechnol Biochem 72:1887–1893. doi: 10.1271/bbb.80139 PubMedCrossRefGoogle Scholar
  56. Müller H, Westendorf C, Leitner E, Chernin L, Riedel K, Schmidt S, Eberl L, Berg G (2009) Quorum‐sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO‐C48. FEMS Microbiol Ecol 67:468–478. doi: 10.1111/j.1574-6941.2008.00635.x PubMedCrossRefGoogle Scholar
  57. Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST (2005) The paraoxonase gene family and atherosclerosis. Free Radical Biol Med 38:153–163. doi: 10.1016/j.freeradbiomed.2004.09.035 CrossRefGoogle Scholar
  58. Nhan DT, Cam DTV, Wille M, Defoirdt T, Bossier P, Sorgeloos P (2010) Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. J Appl Microbiol 109:1007–1016. doi: 10.1111/j.1365-2672.2010.04728.x PubMedCrossRefGoogle Scholar
  59. Pan J, Huang T, Yao F, Huang Z, Powell CA, Qiu S, Guan X (2008) Expression and characterization of aiiA gene from Bacillus subtilis BS-1. Microbiol Res 163:711–716. doi: 10.1016/j.micres.2007.12.002 PubMedCrossRefGoogle Scholar
  60. Papaioannou E, Wahjudi M, Nadal-Jimenez P, Koch G, Setroikromo R, Quax WJ (2009) Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrob Agents Chemother 53:4891–4897. doi: 10.1128/AAC.00380-09 PubMedCrossRefPubMedCentralGoogle Scholar
  61. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK (2003) AhlD, an N–acylhomoserine lactonase in Arthrobacter sp., predicted homologues in other bacteria. Microbiology 149:1541–1550. doi: 10.1099/mic.0.26269-0 PubMedCrossRefGoogle Scholar
  62. Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY (2005) Identification of extracellular N–acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71:2632–2641. doi: 10.1128/AEM.71.5.2632-2641.2005 PubMedCrossRefPubMedCentralGoogle Scholar
  63. Park SY, Hwang BJ, Shin MH, Kim JA, Kim HK, Lee JK (2006) N-acyl homoserine lactone producing Rhodococcus sp. with different AHL-degrading activities. FEMS Microbiol Lett 261:102–108. doi: 10.1111/j.1574-6968.2006.00336.x PubMedCrossRefGoogle Scholar
  64. Qian GL, Fan JQ, Chen DF, Kang YJ, Han B, Hu BS, Liu FQ (2010) Reducing Pectobacterium virulence by expression of an N-acyl homoserine lactonase gene Plpp-aiiA in Lysobacter enzymogenes strain OH11. Biol Control 52:17–23. doi: 10.1016/j.biocontrol.2009.05.007 CrossRefGoogle Scholar
  65. Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V, Zala M, Heurlier K, Triandafillu K, Harms H, Défago G, Haas D (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932PubMedGoogle Scholar
  66. Riaz K, Elmerich C, Moreira D, Raffoux A, Dessaux Y, Faure D (2008) A metagenomic analysis of soil bacteria extends the diversity of quorum–quenching lactonases. Environ Microbiol 10:560–570. doi: 10.1111/j.1462-2920.2007.01475.x PubMedCrossRefGoogle Scholar
  67. Romero M, Diggle SP, Heeb S, Cámara C, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC7120: identification of AiiC, a novel AHL–acylase. FEMS Microbiol Lett 280:73–80. doi: 10.1111/j.1574-6968.2007.01046.x PubMedCrossRefGoogle Scholar
  68. Schipper C, Hornung C, Bijtenhoorn P, Quitschau M, Grond S, Streit WR (2009) Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl Environ Microbiol 75:224–233. doi: 10.1128/AEM.01389-08 PubMedCrossRefPubMedCentralGoogle Scholar
  69. Shang Z, Wang H, Zhou S, Chu W (2014) Characterization of N-Acyl-homoserine lactones (AHLs)-deficient clinical isolates of Pseudomonas aeruginosa. Indian J Microbiol 54:158–162. doi: 10.1007/s12088-014-0449-9 CrossRefGoogle Scholar
  70. Shepherd RW, Lindow SE (2009) Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 75:45–53. doi: 10.1128/AEM.01723-08 PubMedCrossRefPubMedCentralGoogle Scholar
  71. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Cámara M, Williams P, Quax WJ (2006) Quorum Quenching by an N-Acyl-Homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74:1673–1682. doi: 10.1128/IAI.74.3.1673-1682.2006 PubMedCrossRefPubMedCentralGoogle Scholar
  72. Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE Jr (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286. doi: 10.1086/420937 PubMedCrossRefGoogle Scholar
  73. Stoltz DA, Ozer EA, Taft PJ, Barry M, Liu L, Kiss PJ, Moninger TO, Parsek MR, Zabner J (2008) Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1. J Clin Invest 118:3123–3131. doi: 10.1172/JCI35147 PubMedCrossRefPubMedCentralGoogle Scholar
  74. Thomas PW, Stone EM, Costello AL, Tierney DL, Fast W (2005) The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry 44:7559–7569. doi: 10.1021/bi050050m PubMedCrossRefGoogle Scholar
  75. Tinh NTN, Dung NV, Trung CT (2013) In vitro characterization of a recombinant AHL-Lactonase from Bacillus cereus isolated from a striped catfish (Pangasianodon hypophthalmus) pond. Indian J Microbiol 53:485–487. doi: 10.1007/s12088-013-0415-y PubMedCrossRefGoogle Scholar
  76. Ulrich RL (2004) Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl Environ Microbiol 70:6173–6180. doi: 10.1128/AEM.70.10.6173-6180.2004 PubMedCrossRefPubMedCentralGoogle Scholar
  77. Uroz S, Heinon J (2008) Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root associated fungi. FEMS Microbiol Ecol 65:271–278. doi: 10.1111/j.1574-6941.2008.00477.x PubMedCrossRefGoogle Scholar
  78. Uroz S, DAngelo–Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149:1981–1989. doi: 10.1099/mic.0.26375-0 PubMedCrossRefGoogle Scholar
  79. Uroz S, Chhabra SR, Cámara M, Wiliams P, Oger PM, Dessaux Y (2005) N-Acylhomoserine lactone quorum–sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322. doi: 10.1099/mic.0.27961-0 PubMedCrossRefGoogle Scholar
  80. Uroz S, Oger P, Chhabra SR, Cámara M, Williams P, Dessaux Y (2007) N-acyl-homoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1. Arch Microbiol 187:249–256. doi: 10.1007/s00203-006-0186-5 PubMedCrossRefGoogle Scholar
  81. Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74:1357–1366. doi: 10.1128/AEM.02014-07 PubMedCrossRefPubMedCentralGoogle Scholar
  82. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the Yin and Yang of bacterial communication. ChemBiochem 10:205–216. doi: 10.1002/cbic.200800521 PubMedCrossRefGoogle Scholar
  83. Wahjudi M, Papaioannou E, Hendrawati O, van Assen AH, van Merkerk R, Cool RH, Poelarends GJ, Quax WJ (2011) PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology 157:2042–2055. doi: 10.1099/mic.0.043935-0 PubMedCrossRefGoogle Scholar
  84. Wang LH, Weng LX, Dong YH, Zhang LH (2004) Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem 279:13645–13651. doi: 10.1074/jbc.M311194200 PubMedCrossRefGoogle Scholar
  85. Wang WZ, Morohoshi T, Someya N, Ikeda T (2012) AidC, a novel N-acylhomoserine lactonase from the potato root-associated Cytophaga-Flavobacteria-Bacteroides (CFB) group bacterium Chryseobacterium sp. strain StRB126. Appl Environ Microbiol 78:7985–7992. doi: 10.1128/AEM.02188-12 PubMedCrossRefPubMedCentralGoogle Scholar
  86. Wang H, Tu F, Gui Z, Lu X, Chu W (2013) Antibiotic resistance profiles and quorum sensing-dependent virulence factors in clinical isolates of Pseudomonas aeruginosa. Indian J Microbiol 53:163–167. doi: 10.1007/s12088-013-0370-7 PubMedCrossRefPubMedCentralGoogle Scholar
  87. Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:13904–13909. doi: 10.1073/pnas.96.24.13904 PubMedCrossRefPubMedCentralGoogle Scholar
  88. Williamson LL, Borlee BR, Schloss PD, Guan C, Allen HK, Handelsman J (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 71:6335–6344. doi: 10.1128/AEM.71.10.6335-6344.2005 PubMedCrossRefPubMedCentralGoogle Scholar
  89. Yang F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579:3713–3717. doi: 10.1016/j.febslet.2005.05.060 PubMedCrossRefGoogle Scholar
  90. Yang Q, Han Y, Tinh NTN, Hien NT, Bossier P (2012) Detection of quorum sensing signal molecules in Edwardsiella ictaluri Ei-151. Indian J Microbiol 52:581–586. doi: 10.1007/s12088-012-0312-9 PubMedCrossRefPubMedCentralGoogle Scholar
  91. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002) N–Acylhomoserine lactones undergo lactonolysis in a pH–, temperature–, acyl chain length–dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646. doi: 10.1128/IAI.70.10.5635-5646.2002 PubMedCrossRefPubMedCentralGoogle Scholar
  92. Yin XT, Xu L, Fan SS, Xu LN, Li DC, Liu ZY (2010) Isolation and characterization of an AHL lactonase gene from Bacillus amyloliquefaciens. World J Microbiol Biotechnol 26:1361–1367. doi: 10.1007/s11274-010-0308-8 CrossRefGoogle Scholar
  93. Yin WF, Tung HJ, Sam CK, Koh CL, Chan KG (2012) Quorum quenching Bacillus sonorensis isolated from soya sauce fermentation brine. Sensors 12:4065–4073. doi: 10.3390/s120404065 PubMedCrossRefPubMedCentralGoogle Scholar
  94. Zhang L-H, Dong Y-H (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571. doi: 10.1111/j.1365-2958.2004.04234.x PubMedCrossRefGoogle Scholar
  95. Zhang Y, Zhang Y, Yang Y, Wang L, Weng L (2013) Identification of a Pseudomonas sp. that inhibits RHL system of quorum sensing. Indian J Microbiol 53:28–35. doi: 10.1007/s12088-012-0340-5 PubMedCrossRefPubMedCentralGoogle Scholar
  96. Zhou Y, Ye WX, Zhou Y, Zhu CG, Sun M, Yu ZN (2006) Ethanol tolerance, yield of melanin, swarming motility and growth are correlated with the expression levels of aiiA gene in Bacillus thuringiensis. Enzyme Microb Technol 38:967–974. doi: 10.1016/j.enzmictec.2005.08.037 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Prasun Kumar
    • 1
  • Shikha Koul
    • 1
    • 2
  • Sanjay K. S. Patel
    • 3
  • Jung-Kul Lee
    • 3
  • Vipin C. Kalia
    • 1
    • 2
  1. 1.Microbial Biotechnology and GenomicsCSIR-Institute of Genomics and Integrative BiologyDelhiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia
  3. 3.Department of Chemical EngineeringA1414, Konkuk UniversitySeoulSouth Korea

Personalised recommendations