Synthetic Quorum Sensing Inhibitors (QSIs) Blocking Receptor Signaling or Signal Molecule Biosynthesis in Pseudomonas aeruginosa

  • Christine K. Maurer
  • Cenbin Lu
  • Martin Empting
  • Rolf W. Hartmann


Pseudomonas aeruginosa masters quorum sensing (QS) communication to coordinately regulate pathogenicity-associated group behaviors including the production of virulence factors and biofilm formation, which facilitate the invasion into the hosts, counteract host immune system, as well as promote the resistance/tolerance toward conventional antibiotics. Three main QS systems are employed by the pathogen, denoted as las (Gambello and Iglewski 1991; Passador et al. 1993), rhl (Ochsner et al. 1994; Ochsner and Reiser 1995), and pqs (Pesci et al. 1999). All the networks are hierarchically interconnected: las controls the other two systems; pqs positively regulates the rhl signaling, whereas rhl in turn puts a negative feedback upon pqs (Wilder et al. 2011; McGrath et al. 2004). Regarding the central role of QS for the infectious process, the interruption of these pathways by blocking the receptors or inhibiting the signal synthesis via small molecules is an attractive therapeutic strategy to attenuate the bacterial pathogenicity, thereby overcoming intractable P. aeruginosa infections (Rasmussen and Givskov 2006).


Quorum Sense Quorum Sense Inhibition Pseudomonas Quinolone Signal Virulence Factor Production Attractive Therapeutic Strategy 



Acyl carrier protein


N-acyl homoserine lactone


Adenosine monophosphate


Adenosine triphosphate


N-butanoyl-l-homoserine lactone


Coenzyme A






Inhibitor concentration to achieve a half-maximal degree of inhibition




Reduced/oxidized form of nicotinamide adenine dinucleotide

3-oxo-C12 -HSL

N-(3-oxo-dodecanoyl)-l-homoserine lactone




Pseudomonas quinolone signal


Quorum sensing


Quorum sensing inhibitor




RNA polymerase




  1. Amara N, Mashiach R, Amar D, Krief P, Spieser SAH, Bottomley MJ, Aharoni A, Meijler MM (2009) Covalent inhibition of bacterial quorum sensing. J Am Chem Soc 131(30):10610–10619. doi: 10.1021/Ja903292v PubMedCrossRefGoogle Scholar
  2. Bera AK, Atanasova V, Robinson H, Eisenstein E, Coleman JP, Pesci EC, Parsons JF (2009) Structure of PqsD, a pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate. Biochemistry 48(36):8644–8655. doi: 10.1021/Bi9009055 PubMedCrossRefPubMedCentralGoogle Scholar
  3. Calfee MW, Coleman JP, Pesci EC (2001) Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98(20):11633–11637. doi: 10.1073/pnas.201328498 PubMedCrossRefPubMedCentralGoogle Scholar
  4. Christensen QH, Grove TL, Booker SJ, Greenberg EP (2013) A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases. Proc Natl Acad Sci USA 110(34):13815–13820. doi: 10.1073/pnas.1313098110 PubMedCrossRefPubMedCentralGoogle Scholar
  5. Chugani SA, Whiteley M, Lee KM, D'Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98(5):2752–2757. doi: 10.1073/pnas.051624298 PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H et al (2011) Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc Natl Acad Sci USA 108(29):12089–12094. doi: 10.1073/pnas.1103165108 PubMedCrossRefPubMedCentralGoogle Scholar
  7. Coleman JP, Hudson LL, McKnight SL, Farrow JM, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme a ligase. J Bacteriol 190(4):1247–1255. doi: 10.1128/Jb.01140-07 PubMedCrossRefPubMedCentralGoogle Scholar
  8. Dulcey CE, Dekimpe V, Fauvelle DA, Milot S, Groleau MC, Doucet N, Rahme LG, Lepine F, Deziel E (2013) The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem Biol 20(12):1481–1491. doi: 10.1016/j.chembiol.2013.09.021 PubMedCrossRefGoogle Scholar
  9. Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas-aeruginosa lasr gene, a transcriptional activator of elastase expression. J Bacteriol 173(9):3000–3009PubMedPubMedCentralGoogle Scholar
  10. Geske GD, Wezeman RJ, Siegel AP, Blackwell HE (2005) Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127(37):12762–12763. doi: 10.1021/Ja0530321 PubMedCrossRefGoogle Scholar
  11. Geske GD, O'Neill JC, Miller DM, Mattmann ME, Blackwell HE (2007) Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc 129(44):13613–13625. doi: 10.1021/Ja074135h PubMedCrossRefPubMedCentralGoogle Scholar
  12. Geske GD, Mattmann ME, Blackwell HE (2008) Evaluation of a focused library of N-aryl L-homoserine lactones reveals a new set of potent quorum sensing modulators. Bioorg Med Chem Lett 18(22):5978–5981. doi: 10.1016/j.bmcl.2008.07.089 PubMedCrossRefPubMedCentralGoogle Scholar
  13. Gould TA, Schweizer HP, Churchill MEA (2004a) Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol Microbiol 53(4):1135–1146. doi: 10.1111/j.1365-2958.2004.04211.x PubMedCrossRefGoogle Scholar
  14. Gould TA, Watson WT, Choi KH, Schweizer HP, Churchi MEA (2004b) Crystallization of Pseudomonas aeruginosa AHL synthase Lasl using beta-turn crystal engineering. Acta Crystallogr D Biol Crystallogr 60:518–520. doi: 10.1107/S0907444903028300 PubMedCrossRefGoogle Scholar
  15. Henn C, Boettcher S, Steinbach A, Hartmann RW (2012) Catalytic enzyme activity on a biosensor chip: combination of surface plasmon resonance and mass spectrometry. Anal Biochem 428(1):28–30. doi: 10.1016/J.Ab.2012.05.024 PubMedCrossRefGoogle Scholar
  16. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J 22(15):3803–3815. doi: 10.1093/Emboj/Cdg366 PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hinsberger S, de Jong JC, Groh M, Haupenthal J, Hartmann RW (2014) Benzamidobenzoic acids as potent PqsD inhibitors for the treatment of Pseudomonas aeruginosa infections. Eur J Med Chem 76:343–351. doi: 10.1016/j.ejmech.2014.02.014 S0223-5234(14)00134-2 [pii]PubMedCrossRefGoogle Scholar
  18. Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa Enoyl-Acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181(17):5489–5497PubMedPubMedCentralGoogle Scholar
  19. Hodgkinson JT, Galloway WRJD, Wright M, Mati IK, Nicholson RL, Welch M, Spring DR (2012) Design, synthesis and biological evaluation of non-natural modulators of quorum sensing in Pseudomonas aeruginosa. Org Biomol Chem 10(30):6032–6044. doi: 10.1039/C2ob25198a PubMedCrossRefGoogle Scholar
  20. Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K, Heeb S, Camara M et al (2013) Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). Plos Pathog 9(7). doi: ARTN e1003508 doi: 10.1371/journal.ppat.1003508
  21. Ishida T, Ikeda T, Takiguchi N, Kuroda A, Ohtake H, Kato J (2007) Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl Environ Microbiol 73(10):3183–3188. doi: 10.1128/Aem.02233-06 PubMedCrossRefPubMedCentralGoogle Scholar
  22. Jog GJ, Igarashi J, Suga H (2006) Stereoisomers of P-aeruginosa autoinducer analog to probe the regulator binding site. Chem Biol 13(2):123–128. doi: 10.1016/j.chembiol.2005.12.013 PubMedCrossRefGoogle Scholar
  23. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245. doi: 10.1016/j.biotechadv.2012.10.004 PubMedCrossRefGoogle Scholar
  24. Kim C, Kim J, Park HY, Lee JH, Park HJ, Kim CK, Yoon J (2009) Structural understanding of quorum-sensing inhibitors by molecular modeling study in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 83(6):1095–1103. doi: 10.1007/s00253-009-1954-3 PubMedCrossRefGoogle Scholar
  25. Klein T, Henn C, de Jong JC, Zimmer C, Kirsch B, Maurer CK, Pistorius D, Muller R, Steinbach A, Hartmann RW (2012) Identification of small-molecule antagonists of the Pseudomonas aeruginosa transcriptional regulator PqsR: biophysically guided hit discovery and optimization. ACS Chem Biol 7(9):1496–1501. doi: 10.1021/Cb300208g PubMedCrossRefGoogle Scholar
  26. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77(1):73–111. doi: 10.1128/Mmbr.00046-12 PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lesic B, Lepine F, Deziel E, Zhang JW, Zhang QH, Padfield K, Castonguay MH et al (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. Plos Pathog 3(9):1229–1239. doi:ARTN e126. doi  10.1371/journal.ppat.0030126
  28. Lu CB, Kirsch B, Zimmer C, de Jong JC, Henn C, Maurer CK, Musken M, Haussler S, Steinbach A, Hartmann RW (2012) Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 19(3):381–390. doi: 10.1016/j.chembiol.2012.01.015 PubMedCrossRefGoogle Scholar
  29. Lu CB, Maurer CK, Kirsch B, Steinbach A, Hartmann RW (2014) Overcoming the unexpected functional inversion of a PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing. Angew Chem Int Ed 53(4):1109–1112. doi: 10.1002/anie.201307547 CrossRefGoogle Scholar
  30. Maurer CK, Steinbach A, Hartmann RW (2013) Development and validation of a UHPLC-MS/MS procedure for quantification of the Pseudomonas Quinolone Signal in bacterial culture after acetylation for characterization of new quorum sensing inhibitors. J Pharm Biomed Anal 86:127–134. doi: 10.1016/j.jpba.2013.07.047 PubMedCrossRefGoogle Scholar
  31. McGrath S, Wade DS, Pesci EC (2004) Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230(1):27–34. doi: 10.1016/S0378-1097(03)00849-8 PubMedCrossRefGoogle Scholar
  32. McInnis CE, Blackwell HE (2011a) Design, synthesis, and biological evaluation of abiotic, non-lactone modulators of LuxR-type quorum sensing. Bioorg Med Chem 19(16):4812–4819. doi: 10.1016/j.bmc.2011.06.072 PubMedCrossRefPubMedCentralGoogle Scholar
  33. McInnis CE, Blackwell HE (2011b) Thiolactone modulators of quorum sensing revealed through library design and screening. Bioorg Med Chem 19(16):4820–4828. doi: 10.1016/j.bmc.2011.06.071 PubMedCrossRefPubMedCentralGoogle Scholar
  34. Morkunas B, Galloway WRJD, Wright M, Ibbeson BM, Hodgkinson JT, O’Connell KMG, Bartolucci N, Della Valle M, Welch M, Spring DR (2012) Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 10(42):8452–8464. doi: 10.1039/C2ob26501j PubMedCrossRefGoogle Scholar
  35. Muh U, Hare BJ, Duerkop BA, Schuster M, Hanzelka BL, Heim R, Olson ER, Greenberg EP (2006a) A structurally unrelated mimic of a Pseudomonas aeruginosa acyl-homoserine lactone quorum-sensing signal. Proc Natl Acad Sci USA 103(45):16948–16952. doi: 10.1073/pnas.0608348103 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Muh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP (2006b) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 50(11):3674–3679. doi: 10.1128/Aac.00665-06 PubMedCrossRefPubMedCentralGoogle Scholar
  37. Musthafa KS, Balamurugan K, Pandian SK, Ravi AV (2012) 2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52(6):679–686. doi: 10.1002/jobm.201100292 PubMedCrossRefGoogle Scholar
  38. O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 110(44):17981–17986. doi: 10.1073/pnas.1316981110 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas-Aeruginosa. Proc Natl Acad Sci USA 92(14):6424–6428. doi: 10.1073/pnas.92.14.6424 PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia-Coli of the Pseudomonas-aeruginosa Rhlab genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269(31):19787–19795PubMedGoogle Scholar
  41. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci USA 96(8):4360–4365. doi: 10.1073/pnas.96.8.4360 PubMedCrossRefPubMedCentralGoogle Scholar
  42. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas-Aeruginosa virulence genes requires cell-to-cell communication. Science 260(5111):1127–1130. doi: 10.1126/science.8493556 PubMedCrossRefGoogle Scholar
  43. Persson T, Hansen TH, Rasmussen TB, Skinderso ME, Givskov M, Nielsen J (2005) Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 3(2):253–262. doi: 10.1039/B415761c PubMedCrossRefGoogle Scholar
  44. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96(20):11229–11234PubMedCrossRefPubMedCentralGoogle Scholar
  45. Pistorius D, Ullrich A, Lucas S, Hartmann RW, Kazmaier U, Muller R (2011) Biosynthesis of 2-Alkyl-4(1H)-quinolones in Pseudomonas aeruginosa: potential for therapeutic interference with pathogenicity. Chembiochem 12(6):850–853. doi: 10.1002/cbic.201100014 PubMedCrossRefGoogle Scholar
  46. Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296(2–3):149–161. doi: 10.1016/j.ijmm.2006.02.005 PubMedCrossRefGoogle Scholar
  47. Raychaudhuri A, Jerga A, Tipton PA (2005) Chemical mechanism and substrate specificity of RhlI, an acylhomoserine lactone synthase from Pseudomonas aeruginosa. Biochemistry 44(8):2974–2981. doi: 10.1021/Bi048005m PubMedCrossRefGoogle Scholar
  48. Sahner JH, Brengel C, Storz MP, Groh M, Plaza A, Muller R, Hartmann RW (2013) Combining in silico and biophysical methods for the development of Pseudomonas aeruginosa quorum sensing inhibitors: an alternative approach for structure-based drug design. J Med Chem 56(21):8656–8664. doi: 10.1021/Jm401102e PubMedCrossRefGoogle Scholar
  49. Schertzer JW, Brown SA, Whiteley M (2010) Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 77(6):1527–1538. doi: 10.1111/j.1365-2958.2010.07303.x PubMedCrossRefPubMedCentralGoogle Scholar
  50. Scutera S, Zucca M, Savoia D (2014) Novel approaches for the design and discovery of quorum-sensing inhibitors. Expert Opin Drug Discov 9(4):353–366. doi: 10.1517/17460441.2014.894974 PubMedCrossRefGoogle Scholar
  51. Smith KM, Bu YG, Suga H (2003) Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol 10(6):563–571. doi: 10.1016/S1074-5521(03)00107-8 PubMedCrossRefGoogle Scholar
  52. Stacy DM, Le Quement ST, Hansen CL, Clausen JW, Tolker-Nielsen T, Brummond JW, Givskov M, Nielsen TE, Blackwell HE (2013) Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Org Biomol Chem 11(6):938–954. doi: 10.1039/C2ob27155a PubMedCrossRefPubMedCentralGoogle Scholar
  53. Steinbach A, Maurer CK, Weidel E, Henn C, Brengel C, Hartmann RW, Negri M (2013) Molecular basis of HHQ biosynthesis: molecular dynamics simulations, enzyme kinetic and surface plasmon resonance studies. BMC Biophys 6. doi:Unsp 10. doi: 10.1186/2046-1682-6-10
  54. Storz MP, Maurer CK, Zimmer C, Wagner N, Brengel C, de Jong JC, Lucas S et al (2012) Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by development of small-molecule inhibitors. J Am Chem Soc 134(39):16143–16146. doi: 10.1021/Ja3072397 PubMedCrossRefGoogle Scholar
  55. Storz MP, Brengel C, Weidel E, Hoffmann M, Hollemeyer K, Steinbach A, Muller R, Empting M, Hartmann RW (2013) Biochemical and biophysical analysis of a Chiral PqsD inhibitor revealing tight-binding behavior and enantiomers with contrary thermodynamic signatures. ACS Chem Biol 8(12):2794–2801. doi: 10.1021/Cb400530d PubMedCrossRefGoogle Scholar
  56. Weidel E, de Jong JC, Brengel C, Storz MP, Braunshausen A, Negri M, Plaza A, Steinbach A, Muller R, Hartmann RW (2013) Structure optimization of 2-benzamidobenzoic acids as PqsD inhibitors for Pseudomonas aeruginosa infections and elucidation of binding mode by SPR, STD NMR, and molecular docking. J Med Chem 56(15):6146–6155. doi: 10.1021/Jm4006302 PubMedCrossRefGoogle Scholar
  57. Wilder CN, Diggle SP, Schuster M (2011) Cooperation and cheating in Pseudomonas aeruginosa: the roles of the las, rhl and pqs quorum-sensing systems. ISME J 5(8):1332–1343. doi: 10.1038/ismej.2011.13 PubMedCrossRefPubMedCentralGoogle Scholar
  58. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53(6):1054–1061. doi: 10.1093/Jac/Dkh223 PubMedCrossRefGoogle Scholar
  59. Xiao GP, Deziel E, He JX, Lepine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62(6):1689–1699. doi: 10.1111/j.1365-2958.2006.05462.x PubMedCrossRefGoogle Scholar
  60. Zender M, Klein T, Henn C, Kirsch B, Maurer CK, Kail D, Ritter C, Dolezal O, Steinbach A, Hartmann RW (2013) Discovery and biophysical characterization of 2-amino-oxadiazoles as novel antagonists of PqsR, an important regulator of Pseudomonas aeruginosa virulence. J Med Chem 56(17):6761–6774. doi: 10.1021/Jm400830r PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Christine K. Maurer
    • 1
  • Cenbin Lu
    • 1
  • Martin Empting
    • 1
  • Rolf W. Hartmann
    • 1
    • 2
  1. 1.Department Drug Design and OptimizationHelmholtz-Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany
  2. 2.Pharmaceutical and Medicinal Chemistry at the Saarland UniversitySaarbrückenGermany

Personalised recommendations