Fungal Quorum Sensing Inhibitors



Adaptation to various ecosystems is important to all microbes for growth and survival. Pathogenic microbes, especially bacteria, have developed mechanisms of synchronised expression of virulence genes with increasing population density through quorum sensing, enabling their survival in various host organisms. Due to its direct significance to humans, quorum sensing has been studied in great detail in pathogens and has significantly contributed to our understanding of microbe-host interactions. During the course of evolution, fungi have developed ways to control competing bacterial populations that co-existed. One way they achieved this is by hampering the quorum-sensing signalling amongst bacteria. Several fungal quorum sensors, metabolites, mycotoxins and enzymes secreted or produced by fungi for their communication or in response to environment are known to act as quorum-sensing inhibitors (QSIs). Farnesol, farnesoic acid isolated from Candida albicans have shown inter-species and inter-kingdom inhibition to quorum-sensing signalling. Metabolites, such as patulin and penicillic acid have shown QSI activity against bacteria. Enzymes from Aspergillus niger, Trichoderma viride and Penicillium species, such as cellulases, proteases and amylases can be used to degrade bacterial biofilms. QSIs typically utilise three different strategies: (1) inhibiting the production of quorum-sensing molecules; (2) degrading the signalling molecules; and/or (3) blocking the receptors for signalling molecules. Fungal QSIs have been successfully tested under laboratory conditions to inhibit bacteria from forming biofilms on medical equipment and reduce spoilage of processed food products. They are also a promising agent to counter increasing antibiotic-resistance amongst bacteria. Apart from agriculture and waste water treatment, fungal QSIs have potential importance for pharmaceutical and food industries as antibiotic supplement and food preservatives, respectively. This chapter discusses these aspects in fungi with a view to emphasise the need for discovering and developing novel quorum-sensing inhibitors and their potential application in industries.


Endophytic Fungus Homoserine Lactone Trichoderma Viride Yeast Form Rhodococcus Erythropolis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Department of Biotechnology (DBT) for funding the Microbial Culture Collection (MCC) wide grant letter no. BT/PR10054/NDB/52/94/2007.


  1. Abbott SP (2002) Mycotoxins and indoor molds. Indoor Environ Connect 3(4):14–24Google Scholar
  2. Adak S, Upadrasta L, Kumar SPJ, Soni R, Banerjee R (2011) Quorum quenching – an alternative antimicrobial therapeutics. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, BadajozGoogle Scholar
  3. Adonizio A, Kong KF, Mathee K (2008) Inhibition of QS-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 52:198–203PubMedPubMedCentralGoogle Scholar
  4. Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50:337–345PubMedGoogle Scholar
  5. Alonso-Monge R, Román E, Arana DM, Pla J, Nombela C (2009) Fungi sensing environmental stress. Clin Microbiol Infect 15:17–19PubMedGoogle Scholar
  6. Alspaugh JA, Cavallo LM, Perfect JR, Heitman J (2000) RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 36:352–365PubMedGoogle Scholar
  7. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:969–978Google Scholar
  8. Balaban N, Giacometti A, Cirioni O, Gov M, Hirshberg M, Koyfman N, Mathews HR, Nhan RT, Singh B, Uzeil O (2003) Use the quorum- sensing inhibitor RNA III- inhibiting peptide to prevent biofilm formation in vivo by drug resistant Staphylococcus epidermidis. J Infect Dis 187:625–630PubMedGoogle Scholar
  9. Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein JB, Silvestri C, Mocchengiani F, Saba V, Scalise G (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum- sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229PubMedPubMedCentralGoogle Scholar
  10. Bell-Pederson D, Dunlap JC, Loros JJ (1996) Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg2) gene. Mol Cell Biol 16:513–521Google Scholar
  11. Borges-Walmsley MI, Walmsley AR (2000) cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol 8:133–141PubMedGoogle Scholar
  12. Borrego EJ, Kolomiets MV (2012) Lipid-mediated signalling between fungi and plants. In: Witzany G (ed) Biocommunication of fungi. Springer, DordrechtGoogle Scholar
  13. Brilhante RSN, Valente LGA, Rocha MFG, Bandeira TJPG, Cordeiro RA, Lima RAC, Leite, JJG, Ribeiro JF, Pereira JF, Castelo-Branco DSCM, Sidrim JJC (2012) Sesquiterpene farnesol contributing to increased susceptibility to b-lactams in strains of Burkholderia pseudomallei. Antimicrob Agents Chemother.
  14. Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y, Zhu ZY, Chen WS, Jiang YY (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49:584–589PubMedPubMedCentralGoogle Scholar
  15. Casadevall A, Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67:3703–3713PubMedPubMedCentralGoogle Scholar
  16. Cassola A, Parrot M, Silberstein S, Magee BB, Passeron S, Giasson L, Cantore ML (2004) Candida albicans lacking the gene encoding the regulatory subunit of protein kinase a displays a defect in hyphal formation and an altered localization of the catalytic subunit. Eukaryotic Cell 3:190–199PubMedPubMedCentralGoogle Scholar
  17. Cerca N, Gomes F, Pereira S, Teixeira P, Oliveira R (2012) Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. BMC Res Notes 5:244PubMedPubMedCentralGoogle Scholar
  18. Cheetham J, Smith DA, Dantas ADS, Doris KS, Patterson MJ, Bruce CR, Quinn J (2007) A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell 18:4603–4614PubMedPubMedCentralGoogle Scholar
  19. Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161PubMedPubMedCentralGoogle Scholar
  20. Chen L, Wen Yu-mei (2011) The role of bacterial biofilm in persistent infections and control strategies. Int J Oral Sci 3:66–73. doi: 10.4248/IJOS11022 PubMedPubMedCentralGoogle Scholar
  21. Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101:5048–5052PubMedPubMedCentralGoogle Scholar
  22. Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500. doi: 10.3390/ijms140917477 PubMedPubMedCentralGoogle Scholar
  23. Cho EJ, Oh JY, Chang HY, Yun JW (2006) Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol 127:129–140PubMedGoogle Scholar
  24. Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, Bae SH, Yun JW (2007) Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 75:1257–1265PubMedGoogle Scholar
  25. Cloutier M, Castilla R, Bolduc N, Zelada A, Martineau P, Bouillon M, Magee BB, Passeron S, Giasson L, Cantore ML (2003) The two isoforms of the cAMP dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet Biol 38:133–141PubMedGoogle Scholar
  26. Cordeiro RA, Nogueira GC, Brilhante RSN, Teixeira CEC, Mourão CI, Castelo-Branco D de Souza CM, Paiva MAN, Ribeiro JF, Monteiro AJ, Sidrim JJC, Rocha MFG (2012) Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Vet Microbiol 159:375–380Google Scholar
  27. Costerone JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322Google Scholar
  28. Cotar AI (2013) Quorum sensing inhibitors as anti-pathogenic drugs in the fight against Pseudomonas aeruginosa infections. Clin Microbiol 2(4):e111. doi: 10.4172/2327-5073.1000e111 Google Scholar
  29. Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906PubMedGoogle Scholar
  30. Dastager SG, Li WJ, Dayanand A, Tang SK, Tian XP, Zhi XY, Xu LH, Jiang CL (2006) Separation, identification and analysis of pigment (melanin) production in Streptomyces. Afr J Biotechnol 5:1131–1134Google Scholar
  31. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122. doi: 10.1038/nrd1008 PubMedGoogle Scholar
  32. Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA (2008) Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 67:47–62PubMedPubMedCentralGoogle Scholar
  33. Dechant R, Peter M (2008) Nutrient signals driving cell growth. Curr Opin Cell Biol 20:678–687PubMedGoogle Scholar
  34. Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80. doi: 10.1016/j.tim.2009.12.008 PubMedGoogle Scholar
  35. Defoirdt T, Boon N, Bossier P (2010) Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog 6:e1000989. doi: 10.1371/journal.ppat.1000989 PubMedPubMedCentralGoogle Scholar
  36. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258. doi: 10.1016/j.mib.2011.03.004 PubMedGoogle Scholar
  37. Derengowski LS, De-Souza-Silva C, Braz SV, Mello-De-Sousa TM (2009) Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob 8:13. doi: 10.1186/1476-0711-8-13 PubMedPubMedCentralGoogle Scholar
  38. Dohlman HG, Slessareva JE (2006) Pheromone signaling pathways in yeast. Sci Signal 364:cm6. doi: 10.1126/stke.3642006cm6 Google Scholar
  39. Dong Y-H, Zhang L-H (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109PubMedGoogle Scholar
  40. Dumitru R, Hornby JM, Nickerson KW (2004) Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother 48:2350–2354PubMedPubMedCentralGoogle Scholar
  41. Eisman B, Alonso-Monge R, Román E, Arana D, Nombela C, Pla J (2006) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell 5:347–358PubMedPubMedCentralGoogle Scholar
  42. Fairn GD, MacDonald K, McMaster CR (2007) A chemogenomic screen in Saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. J Biol Chem 282:4868–4874PubMedGoogle Scholar
  43. Fernandes L, Araujo MAM, Amaral A, Reis VCB, Martins NF, Felipe MS (2005) Cell signalling pathways in Paracoccidioides brasiliensis- inferred from comparisons with other fungi. Genet Mol Res 4:216–231PubMedGoogle Scholar
  44. Finch RG, Pritchard DI, Bycroft BW, Williams P, Stewart GS (1998) Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother 42(5):569–571PubMedGoogle Scholar
  45. Frazer J (2013) Accident of evolution allows fungi to thrive in our bodies. Scientific American Web Exclusive. Accessed 11 May 2014
  46. Frisvad JC, Thrane U, Filtenborg O (1998) Role and use of secondary metabolites in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New YorkGoogle Scholar
  47. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112(2):231–240. doi: 10.1016/j.mycres.2007.08.018 PubMedGoogle Scholar
  48. Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG, Edwards JE Jr (2002) Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44:61–72PubMedGoogle Scholar
  49. García-Contreras R, Maeda T, Wood TK (2013) Resistance to quorum-quenching compounds. Appl Environ Microbiol 79(22):6840–6846. doi: 10.1128/AEM.02378-13 PubMedPubMedCentralGoogle Scholar
  50. Gautam CK, Srivastav AK, Bind S, Madhav M, Shanthi V (2013) An insight into biofilm ecology and its applied aspects. Int J Pharm Pharm Sci 5(4):69–73Google Scholar
  51. Gomes FIA, Leite B, Teixeira P, Cerca N, Azeredo J, Oliveira R (2011a) Farnesol as antibiotics adjuvant in Staphylococcus epidermidis control in vitro. Am J Med Sci 341(3):191–195. doi: 10.1097/MAJ.0b013e3181fcf138 PubMedGoogle Scholar
  52. Gomes FIA, Teixeira P, Cerca N, Azeredo J, Oliveira R (2011b) Effect of farnesol on structure and composition of Staphylococcus epidermidis biofilm matrix. Curr Microbiol 63:354–359PubMedGoogle Scholar
  53. Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor–like Kinase involved in the perception of the bacterial elicitor Flagellin in Arabidopsis. Mol Cell 5:1003–1011PubMedGoogle Scholar
  54. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen fixing rhizobia. Microbiol Mol Biol Rev 67:574–592PubMedPubMedCentralGoogle Scholar
  55. Gould SE (2012) Fungi that steal genes from bacteria. Scientific American Blog. Accessed 11 May 2014
  56. Gow NAR (2009) Fungal morphogenesis: some like it hot. Curr Biol 19:621–629Google Scholar
  57. Hahn Berg IC, Kalfas S, Malmsten M, Arnebrant T (2001) Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. Eur J Oral Sci 109:316–324Google Scholar
  58. Han T-L, Cannon RD, Villas-Bôas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48:747–763PubMedGoogle Scholar
  59. Hazen KC, Cutler JE (1979) Autoregulation of germ tube formation by Candida albicans. Infect Immun 24:661–666PubMedPubMedCentralGoogle Scholar
  60. Hazen KC, Cutler JE (1983) Isolation and purification of morphogenic autoregulatory substance produced by Candida albicans. J Biochem 94:777–783PubMedGoogle Scholar
  61. Henriques M, Martins M, Azeredo J, Oliveira R (2007) Effect of farnesol on Candida dubliniensis morphogenesis. Lett Appl Microbiol 44:199–205. doi: 10.1111/j.1472-765X.2006.02044.x PubMedGoogle Scholar
  62. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307. doi: 10.1172/JCI200320074 PubMedPubMedCentralGoogle Scholar
  63. Hentzer M, Eber L, Nielsen J, Givskov M (2003) Quorum sensing: a novel target for the treatment of biofilm infections. Biodrugs 17(4):241–250PubMedGoogle Scholar
  64. Hisajima T, Maruyama N, Tanabe Y, Ishibashi H, Yamada T, Makimura K, Nishiyama Y, Funakoshi K, Oshima H, Abe S (2008) Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol 52:327–333. doi: 10.1111/j.1348-0421.2008.00044.x PubMedGoogle Scholar
  65. Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5(4):613–619. doi: 10.1128/EC.5.4.613-619 PubMedPubMedCentralGoogle Scholar
  66. Hornby JM, Nickerson KW (2004) Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother 48:2305–2307PubMedPubMedCentralGoogle Scholar
  67. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson W (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992PubMedPubMedCentralGoogle Scholar
  68. Hornby JM, Kebaara BW, Nickerson KW (2003) Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother 47:2366–2369PubMedPubMedCentralGoogle Scholar
  69. Hornby JM, Jacobitz-Kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW (2004) Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol 70:1356–1359PubMedPubMedCentralGoogle Scholar
  70. Jain A, Gupta Y, Agrawal R, Khare P, Jain SK (2007) Biofilms—a microbial life perspective: a critical review. Crit Rev Ther Drug Carr Syst 24(5):393–443Google Scholar
  71. Jangid K, Kong R, Patole MS, Shouche YS (2007) luxRI homologs are universally present in the genus Aeromonas. BMC Microbiol 7:93PubMedPubMedCentralGoogle Scholar
  72. Johansen C, Falholt P, Gram L (1997) Enzymatic removal and disinfection of bacterial biofilm. Appl Environ Microbiol 63:3724–3728PubMedPubMedCentralGoogle Scholar
  73. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245PubMedGoogle Scholar
  74. Kalia VC, Wood TK, Kumar P (2013) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol. doi: 10.1007/s00248-013-0316-y PubMedGoogle Scholar
  75. Kaneko M, Togashi N, Hamashima H, Hirohara M, Inoue Y (2011) Effect of farnesol on mevalonate pathway of Staphylococcus aureus. J Antibiot 64:547–549PubMedGoogle Scholar
  76. Kebaara BW, Langford ML, Navarathna DHMLP, Dumitru R, Nickerson K, Atkin AL (2008) Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot Cell 7:980–987PubMedPubMedCentralGoogle Scholar
  77. Koh C-L, Sam C-K, Yin W-F, Tan LY, Krishnan T, Chong YM, Chan K-G (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13:6217–6228. doi: 10.3390/s130506217 PubMedPubMedCentralGoogle Scholar
  78. Kügler S, Sebghati TS, Eissenberg LG, Goldman WE (2000) Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. PNAS 97(16):8794–8798PubMedPubMedCentralGoogle Scholar
  79. Kumamoto CA (2002) Candida biofilms. Curr Opin Microbiol 5:608–611PubMedGoogle Scholar
  80. Laffey SF, Butler G (2005) Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology 151(4):1073–1081. doi: 10.1099/mic.0.27739-0 PubMedGoogle Scholar
  81. Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, Schröppel K (2001) RAS links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 42:673–687PubMedGoogle Scholar
  82. Lee S-W, Han S-W, Sririyanum M, Park C-J, Seo Y-S, Ronald PC (2009) A Type I–secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853. doi: 10.1126/science.1173438 PubMedGoogle Scholar
  83. Leeder AC, Palma-Guerrero J, Glass NL (2011) The social network: deciphering fungal language. Nat Rev Microbiol 9:440–451PubMedGoogle Scholar
  84. Leng P, Lee PR, Wu H, Brown AJP (2001) Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol 183:4090–4093PubMedPubMedCentralGoogle Scholar
  85. Li B, Dong MS (2010) Inhibition effect of extract from Auricularia auricular on quorum sensing and biofilm formation of bacteria. Food Sci 31:140–143Google Scholar
  86. Lingappa BT, Lingappa Y (1969) Role of auto-inhibitors on mycelial growth and dimorphism of Glomerella cingulata. J Gen Microbiol 56:35–45PubMedGoogle Scholar
  87. Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K (1969) Phenethyl alcohol and tryptophol: auto antibiotics produced by the fungus Candida albicans. Science 163:192–194PubMedGoogle Scholar
  88. Liu P, Deng B, Long CA, Min X (2009) Effect of farnesol on morphogenesis in the fungal pathogen Penicillium expansum. Ann Microbiol 59:33–38Google Scholar
  89. Lung MY, Tsai JC, Huang PC (2010) Antioxidant properties of edible basidiomycete Phellinus igniarius in submerged cultures. J Food Sci 75(1):18–24. doi: 10.1111/j.1750-3841.2009.01384.x Google Scholar
  90. Macko V, Staples RC, Gershon H, Renwick JA (1970) Self inhibitor of bean rust uredospores: methyl 3,4-dimethoxycinnamate. Science 170:539–540PubMedGoogle Scholar
  91. Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR, Tomás M, Wood TK (2012) Quorum quenching quandary: resistance to anti virulence compounds. ISME J 6:493–501. doi: 10.1038/ismej.2011.122 PubMedPubMedCentralGoogle Scholar
  92. Matson J (2011) Unwanted housemates: dishwashers provide habitat for “extremotolerant” fungi. Scientific American Blog. Assessed 11 May 2014
  93. Mattmann ME, Blackwell HE (2010) Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J Org Chem 75:6737–6746. doi: 10.1021/j0101237e PubMedPubMedCentralGoogle Scholar
  94. Maximilien R, de Nys R, Holmström C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246Google Scholar
  95. Mohan SK, Srivastava T (2010) Microbial deterioration and degradation of polymeric materials. J Biochem Technol 2(4):210–215Google Scholar
  96. Mosel DD, Dumitru R, Hornby JM, Atkin AL, Nickerson KW (2005) Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microbiol 71:4938–4940PubMedPubMedCentralGoogle Scholar
  97. Navarathna DHMLP, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW (2005) Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother 56:1156–1159PubMedGoogle Scholar
  98. Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72(6):3805–3813. doi: 10.1128/AEM.02765-05 PubMedPubMedCentralGoogle Scholar
  99. Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1:201–210. doi: 10.1002/emmm.200900032 PubMedPubMedCentralGoogle Scholar
  100. Oh K-B, Miyazawa H, Naito T, Matsuoka H (2001) Purification and characterization of an auto regulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci U S A 98:4664–4668PubMedPubMedCentralGoogle Scholar
  101. Orgaz B, Kivesb J, Pedregosa AM, Monistrol IF, Laborda F, Jośe CS (2006) Bacterial biofilm removal using fungal enzymes. Enzym Microb Technol 40:51–56Google Scholar
  102. Pammi M, Liang R, Hicks J, Barrish J, Versalovic J (2011) Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr Res 70:578–583PubMedPubMedCentralGoogle Scholar
  103. Pan JC, Ren DC (2009) Quorum sensing inhibitors: a patent review. Expert Opin Ther Patents 19:1581–1601Google Scholar
  104. Persson T, Hansen TH, Rasmussen TB, Skindersoe ME, Givskov M, Nielsen J (2005) Rational design and synthesis of new quorum sensing inhibitors derived from acylated homoserine lactones and natural product from garlic. Org Biomol Chem 3:253–262PubMedGoogle Scholar
  105. Pitt JI (2000) Toxigenic fungi and mycotoxins. Br Med Bull 56(1):184–192PubMedGoogle Scholar
  106. Rajesh PS, Rai RV (2013) Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. Biocatal Agric Biotechnol 2:120–124Google Scholar
  107. Ramage G, Saville SP, Wickes BL, López-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463. doi: 10.1128/AEM.68.11.5459-5463 PubMedPubMedCentralGoogle Scholar
  108. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638PubMedPubMedCentralGoogle Scholar
  109. Rasch M, Andersen JB, Nielsen KF, Flodgaard LR, Christensen H, Givskov M, Gram L (2005) Involvement of bacterial quorum sensing signals in spoilage of bean sprouts. Appl Environ Microbiol 71:3321–3330PubMedPubMedCentralGoogle Scholar
  110. Rasch M, Rasmussen TB, Andersen JB, Persson T, Nielsen J, Givskov M, Gram L (2007) Well-known quorum sensing inhibitors do not affect bacterial quorum sensing-regulated bean sprout spoilage. J Appl Microbiol 102:826–837. doi: 10.1111/j.1365-2672.2006.03121.x PubMedGoogle Scholar
  111. Rasmussen TB, Givskov M (2006a) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161. doi: 10.1016/j.ijmm.2006.02.005 PubMedGoogle Scholar
  112. Rasmussen TB, Givskov M (2006b) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904. doi: 10.1099/mic.0.28601-0 PubMedGoogle Scholar
  113. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005a) Screening for Quorum-Sensing Inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814. doi: 10.1128/JB.187.5.1799-1814.2005 PubMedPubMedCentralGoogle Scholar
  114. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005b) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340PubMedGoogle Scholar
  115. Rex E (2012) Invasive fungi wreak havoc on species worldwide [slide show]. Scientific American News. Assessed 11 May 2014
  116. Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4:911–919PubMedPubMedCentralGoogle Scholar
  117. Rocha CRC, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E (2001) Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643PubMedPubMedCentralGoogle Scholar
  118. Román E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J (2009) The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res 9:942–955PubMedGoogle Scholar
  119. San-Blas G, Travassos LR, Fries BC, Goldman DL, Casadevall A, Carmona AK, Barros TF, Puccia R, Hostetter MK, Shanks SG, Copping VM, Knox Y, Gow NA (2000) Fungal morphogenesis and virulence. Med Mycol 38(suppl 1):79–86Google Scholar
  120. Sato T, Watanabe T, Mikami T, Matsumoto T (2004) Farnesol, a morphogenetic auto regulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull 27:751–752PubMedGoogle Scholar
  121. Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD (2006) Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59(3):753–764PubMedGoogle Scholar
  122. Shiner EK, Rumbaugh KP, Williams SC (2005) Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29:935–947PubMedGoogle Scholar
  123. Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA (2009) Farnesol induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53:2392–2401PubMedPubMedCentralGoogle Scholar
  124. Silva D (2003) Ganoderma lucidum (Reishi) in cancer treatment. Integr Cancer Ther 2(4):358–364. doi: 10.1177/1534735403259066 Google Scholar
  125. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60PubMedGoogle Scholar
  126. Summers (2012) Bacteria talk, plants listen: the discovery of plant immune receptors, an interview with Pamela Ronald. Scientific American Blog. Assessed 11 May 2014
  127. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648PubMedGoogle Scholar
  128. Ueda M, KuboT MK, Nakamura K (2007) Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Appl Microbiol Biotechnol 74:331–338PubMedGoogle Scholar
  129. Uroz S, Heinonsalo J (2008) Degradation of N -acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol Ecol 65:271–278. doi: 10.1111/j.1574-6941.2008.00477.x PubMedGoogle Scholar
  130. Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482Google Scholar
  131. Wachtel-Galor S, Tomlinson B, Benzie IFF (2004) Ganoderma lucidum (‘Lingzhi’), a Chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Br J Nutr 91(2):263–269. doi: 10.1079/BJN20041039 PubMedGoogle Scholar
  132. Weber K, Schulz B, Ruhnke M (2010) The quorum-sensing molecule E, E-farnesol- its variable secretion and its impact on the growth and metabolism of Candida species. Yeast 27:727–739PubMedGoogle Scholar
  133. Witzany G (2010) Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 1(5):160–180PubMedPubMedCentralGoogle Scholar
  134. Witzany G (2012) Introduction: key levels of biocommunication in fungi. In: Witzany G (ed) Biocommunication of fungi. Springer, DordrechtGoogle Scholar
  135. Wong C-S, Koh C-L, Sam C-K, Chen J-W, Chong YM, Yin W-F, Chan K-G (2013) Degradation of bacterial quorum sensing signaling molecules by the microscopic yeast Trichosporon loubieri isolated from tropical wetland waters. Sensors 13:12943–12957. doi: 10.3390/s131012943 PubMedPubMedCentralGoogle Scholar
  136. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Høiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061PubMedGoogle Scholar
  137. Yu RC, Pesce CG, Colman-Lerner A, Lok L, Pincus D, Serra E, Holl M, Benjamin K, Gordon A, Brent R (2008) Negative feedback that improves information transmission in yeast signalling. Nature 456:755–761PubMedPubMedCentralGoogle Scholar
  138. Zhu H, Sun SJ (2008) Inhibition of bacterial quorum sensing-regulated behaviours by Tremella fuciformis extract. Curr Microbiol 57:418–422. doi: 10.1007/s00284-008-9215-8 PubMedGoogle Scholar
  139. Zhu H, Wang TW, Sun SJ, Shen YL, Wei DZ (2006) Chromosomal integration of the Vitreoscilla hemoglobin gene and its physiological actions in Tremella fuciformis. Appl Microbiol Biotechnol 72:770–776PubMedGoogle Scholar
  140. Zhu H, Liu W, Tian B, Liu H, Ning S (2011) Inhibition of quorum sensing in the opportunistic pathogenic bacterium Chromobacterium violaceum by an extract from fruiting bodies of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (w.Curt.:Fr.) p. Karst. (higher basidiomycetes). Int J Med Mushroom 13:559–564Google Scholar
  141. Zhu H, Liu W, Wang S, Tian B, Zhang S (2012) Evaluation of anti-quorum-sensing activity of fermentation metabolites from different strains of a medicinal mushroom, Phellinus igniarius. Chemotherapy 58:195–199PubMedGoogle Scholar
  142. Zibafar E, Hashemi SJ, Zaini F, Zeraati H, Rezaie S, Kordbacheh P (2009) Inhibitory effect of farnesol on biofilm formation by Candida tropicalis. Daru 17(1):19–23Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Microbial Culture CollectionNational Centre for Cell SciencePuneIndia

Personalised recommendations