Skip to main content

Abstract

The introduction of antibiotics for treating infectious diseases in the twentieth century led to an incredible reduction in the death rate of humans. However, the emergence of resistance to antibiotics in bacteria rendered these resistant organisms an ability to rise up against these magic bullets. Though antibiotic resistance is ancient, the indiscriminate use of antibiotics created an immense selective pressure on the bacteria facilitating the faster evolution of resistant bugs. This evolution process was mediated by the pivotal role of various factors like mutations in the antibiotic target sites, efflux pumps and acquisition of resistance genes by horizontal gene transfer. Bacteria exposed to multiple antibiotic environments were endowed with resistance mechanisms to multiple drugs which eventually increased the treatment complication. The selective pressures in health care and community settings spawned multidrug resistance (MDR) as evidenced by the emergence of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), extended-spectrum-beta-lactamase (ESBL)-producing bacteria and quinolone resistant bacteria. As new drugs also end up with the same fate in this never-ending war between multidrug-resistant bugs and humans, most of the pharmaceutical industries have withdrawn their efforts in seeking new antibiotics. Thus, the present scenario made a compulsion on mankind to search for alternative antibacterial therapies. In this chapter, representative but not comprehensive descriptions are given for various genetic and non-genetic elements that have contributed to the evolution of MDR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    Article  PubMed  CAS  Google Scholar 

  • Baharoglu Z, Garriss G, Mazel D (2013) Multiple pathways of genome plasticity leading to development of antibiotic resistance. Antibiotics 2:288–315

    Article  CAS  Google Scholar 

  • Baquero F, Negri MC, Morosini MI, Blazquez J (1998) Antibiotic-selective environments. Clin Infect Dis 27(Suppl 1):S5–S11

    Article  PubMed  Google Scholar 

  • Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L et al (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766–5779

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhardwaj AK, Mohanty P (2012) Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvinating the antimicrobial chemotherapy. Recent Pat Antiinfect Drug Discov 7:73–89

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj AK, Vinothkumar K, Rajpara N (2013) Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov 8:68–83

    Article  PubMed  CAS  Google Scholar 

  • Breithaupt H (1999) The new antibiotics. Nat Biotechnol 17:1165–1169

    Article  PubMed  CAS  Google Scholar 

  • Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155:376–386

    Article  PubMed  CAS  Google Scholar 

  • Chong Y, Ito Y, Kamimura T (2011) Genetic evolution and clinical impact in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol 11:1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Da Re S, Garnier F, Guerin E, Campoy S, Denis F, Ploy MC (2009) The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep 10:929–933

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Lencastre H, Oliveira D, Tomasz A (2007) Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol 10:428–435

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Directorate General of Health Services (2011) National policy for containment of antimicrobial resistance, India. http://nicd.nic.in/ab_policy.pdf

  • Finch R, Hunter PA (2006) Antibiotic resistance-action to promote new technologies: report of an EU Intergovernmental Conference held in Birmingham, UK, 12–13 December 2005. J Antimicrob Chemother 58(Suppl 1):i3–i22

    Article  PubMed  Google Scholar 

  • Garriss G, Waldor MK, Burrus V (2009) Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet 5:e1000775

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall RM, Brookes DE, Stokes HW (1991) Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol 5:1941–1959

    Article  PubMed  CAS  Google Scholar 

  • Hernandez A, Sanchez MB, Martinez JL (2011) Quinolone resistance: much more than predicted. Front Microbiol 2:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245

    Article  PubMed  CAS  Google Scholar 

  • Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum sensing inhibitors. Microb Ecol 68(1):13–23

    Google Scholar 

  • Lynch JP 3rd, Clark NM, Zhanel GG (2013) Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum beta-lactamases and carbapenemases). Expert Opin Pharmacother 14:199–210

    Article  PubMed  CAS  Google Scholar 

  • Medeiros AA (1997) Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis 24(Suppl 1):S19–S45

    Article  PubMed  CAS  Google Scholar 

  • Pantosti A, Venditti M (2009) What is MRSA? Eur Respir J 34:1190–1196

    Article  PubMed  CAS  Google Scholar 

  • Perichon B, Courvalin P (2009) VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:4580–4587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rajpara N, Patel A, Tiwari N, Bahuguna J, Antony A, Choudhury I et al (2009) Mechanism of drug resistance in a clinical isolate of Vibrio fluvialis: involvement of multiple plasmids and integrons. Int J Antimicrob Agents 34:220–225

    Article  PubMed  CAS  Google Scholar 

  • Rapa RA, Labbate M (2013) The function of integron-associated gene cassettes in species: the tip of the iceberg. Front Microbiol 4:385

    Article  PubMed  PubMed Central  Google Scholar 

  • Recchia GD, Hall RM (1995) Gene cassettes: a new class of mobile element. Microbiology 141(Pt 12):3015–3027

    Article  PubMed  CAS  Google Scholar 

  • Ries AA, Wells JG, Olivola D, Ntakibirora M, Nyandwi S, Ntibakivayo M et al (1994) Epidemic Shigella dysenteriae type 1 in Burundi: panresistance and implications for prevention. J Infect Dis 169:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH et al (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88

    Article  PubMed  CAS  Google Scholar 

  • Rowe-Magnus AD, Davies J, Mazel D (2002) Impact of integrons and transposons on the evolution of resistance and virulence. Curr Top Microbiol Immunol 264:167–188

    PubMed  CAS  Google Scholar 

  • Sack DA, Lyke C, Mc Laughlin C, Suwanvanichkij V (2001) Antimicrobial resistance in shigellosis, cholera and campylobacteriosis. World Health Organization, Geneva, Switzerland, pp 1–20

    Google Scholar 

  • Singh R, Rajpara N, Tak J, Patel A, Mohanty P, Vinothkumar K et al (2012) Clinical isolates of Vibrio fluvialis from Kolkata, India, obtained during 2006: plasmids, the qnr gene and a mutation in gyrase A as mechanisms of multidrug resistance. J Med Microbiol 61:369–374

    Article  PubMed  CAS  Google Scholar 

  • Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669–1683

    Article  PubMed  CAS  Google Scholar 

  • Tegos GP, Hamblin MR (2013) Disruptive innovations: new anti-infectives in the age of resistance. Curr Opin Pharmacol 13:673–677

    Article  PubMed  CAS  Google Scholar 

  • Waldor MK, Tschape H, Mekalanos JJ (1996) A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:4157–4165

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory is supported by the grants from the Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India (No. BT/PR/11634/INF/22/104/2008), Gujarat State Biotechnology Mission (GSBTM), Department of Science and Technology, Government of Gujarat (No. GSBTM/MD/PROJECTS/SSA/1535/2013–14) and Indian Council of Medical Research, New Delhi, India (No. AMR/49/11-ECDI). K. Vinothkumar is a JRF in the above-mentioned GSBTM grant. The authors are grateful to Dr. Amit Ghosh, Dr. T. Ramamurthy and Dr. S. K. Niyogi, National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India, for their support and advice. The authors thankfully acknowledge the Puri Foundation for Education in India for providing infrastructure facilities and Ms. Neha Rajpara, Mr. Priyabrata Mohanty, Mr. Braj M. R. N. S. Kutar and Ms. Aneri Shah for their invaluable help, advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashima Kushwaha Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bhardwaj, A.K., Vinothkumar, K. (2015). Evolution of MDRs. In: Kalia, V. (eds) Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1982-8_2

Download citation

Publish with us

Policies and ethics