Silencing Bacterial Communication Through Enzymatic Quorum-Sensing Inhibition

  • Manuel Romero
  • Celia Mayer
  • Andrea Muras
  • Ana Otero


Numerous bacterial functions, such as virulence and biofilm formation, are controlled by a cell density-dependent communication mechanism known as quorum sensing (QS), in which small diffusible molecules are released, allowing bacteria to coordinate their behavior once a minimal effective quorum has been reached. The interference with these signaling systems, also known as quorum-sensing inhibition (QSI), represents a promising strategy to tackle bacterial infections. In the past decade, numerous enzymes capable of inactivating QS signals have been described, an activity also known as quorum quenching (QQ). Most known QSI enzymes degrade or modify the Gram-negative QS signal molecules N-acyl-homoserine lactones (AHLs); nonetheless, the specificity of these enzymes as signal quenchers remains unclear as some enzymes have been related, among others, to metabolism of other molecules and to the use of signaling molecules as energy source. Meanwhile, bacterial enzymatic QSI has been explored as a novel anti-pathogenic therapy to control bacterial infections with positive results in plants, the nematode infection model and in aquaculture field. The advantage of enzymatic QSI is that generally displays a wider spectrum of activity than inhibitors or antagonists that are generally more specific, allowing the interference with a higher number of signaling systems.


Acyl Chain Quorum Sense Quorum Sense System Rhodococcus Erythropolis Quorum Sense Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M.R. was financially supported by Fundación Barrié de la Maza. This work has been partially supported by a research project from Fundación Ramón Areces (CIVP16A1814).


  1. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552PubMedGoogle Scholar
  2. Ban H, Chai X, Lin Y, Zhou Y, Peng D, Zou Y, Yu Z, Sun M (2009) Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Rep 28:1847–1855PubMedGoogle Scholar
  3. Baruah K, Cam DTV, Dierckens K, Wille M, Defoirdt T, Sorgeloos P, Bossier P (2009) In vivo effects of single or combined N–acyl homoserine lactone quorum sensing signals on the performance of Macrobrachium rosenbergii larvae. Aquaculture 288:233–238Google Scholar
  4. Bijtenhoorn P, Mayerhofer H, Muller-Dieckmann J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thurmer A, Brzuszkiewicz E, Daniel R, Dierking K, Schulenburg H, Streit WR (2011a) A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS ONE 6:e26278PubMedPubMedCentralGoogle Scholar
  5. Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S, Weiland N, Streit WR (2011b) BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol 155:86–94PubMedGoogle Scholar
  6. Bokhove M, Nadal Jimenez P, Quax WJ, Dijkstra BW (2010) The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci U S A 107:686–691PubMedPubMedCentralGoogle Scholar
  7. Bruhn JB, Dalsgaard I, Nielsen KF, Buchholtz C, Larsen JL, Gram L (2005) Quorum sensing signal molecules (acylated homoserine lactones) in gram-negative fish pathogenic bacteria. Dis Aquat Organ 65:43–52PubMedGoogle Scholar
  8. Camps J, Pujol I, Ballester F, Joven J, Simó JM (2011) Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in Gram-negative bacteria. Antimicrob Agents Chemother 55:1325–1331PubMedPubMedCentralGoogle Scholar
  9. Cao Y, He S, Zhou Z, Zhang M, Mao W, Zhang H, Yao B (2012) Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish. Appl Environ Microbiol 78:1899–1908PubMedPubMedCentralGoogle Scholar
  10. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity. Appl Environ Microbiol 69:4989–4993PubMedPubMedCentralGoogle Scholar
  11. Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Cámara M, Koh CL, Williams P (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11:51PubMedPubMedCentralGoogle Scholar
  12. Chen RD, Zhou ZG, Cao YA, Bai YG, Yao B (2010) High yield expression of an AHL-lactonase from Bacillus sp B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb Cell Fact 9:39PubMedPubMedCentralGoogle Scholar
  13. Cho HS, Park SY, Ryu CM, Kim JF, Kim JG, Park SH (2007) Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol Ecol 60:14–23PubMedGoogle Scholar
  14. Chow JY, Wu L, Yew WS (2009) Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily. Biochemistry 48:4344–4353PubMedGoogle Scholar
  15. Chow JY, Xue B, Lee KH, Tung A, Wu L, Robinson RC, Yew WS (2010) Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily. J Biol Chem 285:40911–40920PubMedPubMedCentralGoogle Scholar
  16. Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, Gonzalez JE, Haines DC (2007) Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46:14429–14437PubMedGoogle Scholar
  17. Chu W, Lu F, Zhu W, Kang C (2011) Isolation and characterization of new potential probiotic bacteria based on quorum-sensing system. J Appl Microbiol 110:202–208PubMedGoogle Scholar
  18. Cirou A, Mondy S, An S, Charrier A, Sarrazin A, Thoison O, DuBow M, Faure D (2012) Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 78:481–492PubMedPubMedCentralGoogle Scholar
  19. Czajkowski R, Krzyżanowska D, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, Williams P, Jafra S (2011) Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 3:59–68Google Scholar
  20. D’Angelo-Picard C, Faure D, Carlier A, Uroz S, Raffoux A, Fray R, Dessaux Y (2005) Bacterial populations in the rhizosphere of tobacco plants producing the quorum-sensing signals hexanoyl-homoserine lactone and 3-oxo-hexanoyl-homoserine lactone. FEMS Microbiol Ecol 51:19–29Google Scholar
  21. Delalande L, Faure F, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y (2005) N-hexanoyl-l-homoserine lactone a mediator of bacterial quorum-sensing regulation exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol Ecol 52:13–20PubMedGoogle Scholar
  22. Deng Y, Wu J, Tao F, Zhang LH (2011) Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev 111:160–173PubMedGoogle Scholar
  23. Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344PubMedPubMedCentralGoogle Scholar
  24. Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109PubMedGoogle Scholar
  25. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531PubMedPubMedCentralGoogle Scholar
  26. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817PubMedGoogle Scholar
  27. Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960PubMedPubMedCentralGoogle Scholar
  28. Dong YH, Wang LH, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Phil Trans R Soc B 362:1201–1211PubMedPubMedCentralGoogle Scholar
  29. Flagan S, Ching WK, Leadbetter JR (2003) Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl Environ Microbiol 69:909–916PubMedPubMedCentralGoogle Scholar
  30. Funami J, Yoshikane Y, Kobayashi H, Yokochi N, Yuan B, Iwasaki K, Ohnishi K, Yagi T (2005) 4-Pyridoxolactonase from a symbiotic nitrogen-fixing bacterium Mesorhizobium loti: cloning, expression, and characterization. Biochim Biophys Acta 1753:234–239PubMedGoogle Scholar
  31. Gao MS, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834PubMedGoogle Scholar
  32. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622PubMedPubMedCentralGoogle Scholar
  33. Haudecoeur E, Faure D (2010) A fine control of quorum-sensing communication in Agrobacterium tumefaciens. Commun Integr Biol 3:84–88PubMedPubMedCentralGoogle Scholar
  34. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949PubMedPubMedCentralGoogle Scholar
  35. Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:1190–1197PubMedPubMedCentralGoogle Scholar
  36. Huang W, Lin Y, Yi S, Liu P, Shen J, Shao Z, Liu Z (2012) QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261. PLoS ONE 7:e46587PubMedPubMedCentralGoogle Scholar
  37. Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, van der Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015PubMedGoogle Scholar
  38. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65PubMedGoogle Scholar
  39. Kang BR, Lee JH, Ko SJ, Lee YH, Cha JS, Cho BH, Kim YC (2004) Degradation of acyl-homoserine lactone molecules by Acinetobacter sp. strain C1010. Can J Microbiol 50:935–941PubMedGoogle Scholar
  40. Kaufmann GF, Sartorio R, Lee SH, Mee JM, Altobell LJ 3rd, Kujawa DP, Jeffries E, Clapham B, Meijler MM, Janda KD (2006) Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc 128:2802–2803PubMedPubMedCentralGoogle Scholar
  41. Khan SR, Farrand SK (2009) The BlcC (AttM) lactonase of Agrobacterium tumefaciens does not quench the quorum-sensing system that regulates Ti plasmid conjugative transfer. J Bacteriol 191:1320–1329PubMedPubMedCentralGoogle Scholar
  42. Krysciak D, Schmeisser C, Preuss S, Riethausen J, Quitschau M, Grond S, Streit WR (2011) Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234. Appl Environ Microbiol 77:5089–5099PubMedPubMedCentralGoogle Scholar
  43. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146PubMedGoogle Scholar
  44. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926PubMedPubMedCentralGoogle Scholar
  45. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK (2002) Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68:3919–3924PubMedPubMedCentralGoogle Scholar
  46. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860PubMedGoogle Scholar
  47. Liu D, Momb J, Thomas PW, Moulin A, Petsko GA, Fast W, Ringe D (2008) Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 1. Product-bound structures. Biochemistry 47:7706–7714PubMedPubMedCentralGoogle Scholar
  48. Llamas I, Suarez A, Quesada E, Bejar V, del Moral A (2003) Identification and characterization of the carAB genes responsible for encoding carbamoylphosphate synthetase in Halomonas eurihalina. Extremophiles 7:205–211PubMedGoogle Scholar
  49. Ma A, Lv D, Zhuang X, Zhuang G (2013) Quorum quenching in culturable phyllosphere bacteria from tobacco. Int J Mol Sci 14:14607–14619PubMedPubMedCentralGoogle Scholar
  50. Marques JC, Lamosa P, Russell C, Ventura R, Maycock C, Semmelhack MF, Miller ST, Xavier KB (2011) Processing the interspecies quorum-sensing signal autoinducer-2 (AI-2): characterization of phospho-(S)-4,5-dihydroxy-2,3-pentanedione isomerization by LsrG protein. J Biol Chem 286:18331–18343PubMedPubMedCentralGoogle Scholar
  51. Mei GY, Yan XX, Turak A, Luo ZQ, Zhang LQ (2010) AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol 76:4933–4942PubMedPubMedCentralGoogle Scholar
  52. Merone L, Mandrich L, Rossi M, Manco G (2005) A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9:297–305PubMedGoogle Scholar
  53. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Defago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81PubMedGoogle Scholar
  54. Molina L, Rezzonico F, Defago G, Duffy B (2005) Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 187:3206–3213PubMedPubMedCentralGoogle Scholar
  55. Morohoshi T, Nakazawa S, Ebata A, Kato N, Ikeda T (2008) Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015. Biosci Biotechnol Biochem 72:1887–1893PubMedGoogle Scholar
  56. Morohoshi T, Wang W-Z, Someya N, Ikeda T (2011) Genome sequence of Microbacterium testaceum StLB037, an N-acylhomoserine lactone-degrading bacterium isolated from potato leaves. J Bacteriol 193:2072–2073PubMedPubMedCentralGoogle Scholar
  57. Morohoshi T, Tominaga Y, Someya N, Ikeda T (2012) Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris. J Biosci Bioeng 113:20–25PubMedGoogle Scholar
  58. Mukherji R, Varshney NK, Panigrahi P, Suresh CG, Prabhune A (2014) A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase. Enzyme Microb Technol 56:1–7PubMedGoogle Scholar
  59. Murataliev MB, Trinh LN, Moser LV, Bates RB, Feyereisen R, Walker FA (2004) Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73–84 with the homologous residues from the insect cytochrome P450 CYP4C7. Biochemistry 43:1771–1780PubMedGoogle Scholar
  60. Newman KL, Chatterjee S, Ho KA, Lindow SE (2008) Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Mol Plant Microbe Interact 21:326–334PubMedGoogle Scholar
  61. Nhan DT, Cam DTV, Wille M, Defoirdt T, Bossier P, Sorgeloos P (2010) Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. J Appl Microbiol 109:1007–1016PubMedGoogle Scholar
  62. Ni N, Li M, Wang J, Wang B (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29:65–124PubMedGoogle Scholar
  63. Oinonen C, Rouvinen J (2000) Structural comparison of Ntn-hydrolases. Protein Sci 9:2329–2337PubMedPubMedCentralGoogle Scholar
  64. Otero A, Romero M, Mayer C (2013) Péptido con actividad inhibidora de quorum sensing, polinucleótido que codifica dicho péptido y sus aplicaciones. Patent application OEPM P201331060Google Scholar
  65. Papaioannou E, Wahjudi M, Nadal-Jimenez P, Koch G, Setroikromo R, Quax WJ (2009) Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrob Agents Chemother 53:4891–4897PubMedPubMedCentralGoogle Scholar
  66. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:1541–1550PubMedGoogle Scholar
  67. Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY (2005) Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71:2632–2641PubMedPubMedCentralGoogle Scholar
  68. Park SJ, Park SY, Ryu CM, Park SH, Lee JK (2008) The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J Microbiol Biotechnol 18:1518–1521PubMedGoogle Scholar
  69. Parsek MR, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 96:4360–4365PubMedPubMedCentralGoogle Scholar
  70. Pechere JC (2001) New perspectives on macrolide antibiotics. Int J Antimicrob Agents 1:93–97Google Scholar
  71. Pereira CS, Santos AJ, Bejerano-Sagie M, Correia PB, Marques JC, Xavier KB (2012) Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2. Mol Microbiol 84:93–104PubMedGoogle Scholar
  72. Pustelny C, Albers A, Buldt-Karentzopoulos K, Parschat K, Chhabra SR, Camara M, Williams P, Fetzner S (2009) Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 16:1259–1267PubMedGoogle Scholar
  73. Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463PubMedPubMedCentralGoogle Scholar
  74. Rashid R, Morohoshi T, Someya N, Ikeda T (2011) Degradation of N-acylhomoserine lactone quorum sensing signaling molecules by potato root surface-associated Chryseobacterium strains. Microbes Environ 26:144–148PubMedGoogle Scholar
  75. Riaz K, Elmerich C, Moreira D, Raffoux A, Dessaux Y, Faure D (2008) A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ Microbiol 10:560–570PubMedGoogle Scholar
  76. Roche DM, Byers JT, Smith DS, Glansdorp FG, Spring DR, Welch M (2004) Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 150:2023–2028PubMedGoogle Scholar
  77. Romero M, Diggle SP, Heeb S, Camara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80PubMedGoogle Scholar
  78. Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217PubMedGoogle Scholar
  79. Romero M, Acuna L, Otero A (2012a) Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 6:2–12PubMedGoogle Scholar
  80. Romero M, Martin-Cuadrado AB, Otero A (2012b) Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable bacteria and metagenomic sequences. Appl Environ Microbiol 78:6345–6348PubMedPubMedCentralGoogle Scholar
  81. Roodveldt C, Tawfik DS (2005) Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Biochemistry 44:12728–12736PubMedGoogle Scholar
  82. Roy V, Fernandes R, Tsao CY, Bentley WE (2010) Cross species quorum quenching using a native AI-2 processing enzyme. ACS Chem Biol 5:223–232PubMedGoogle Scholar
  83. Schaefer AL, Hanzelka BL, Parsek MR, Greenberg EP (2000) Detection, purification and structural elucidation of acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol 305:288–301PubMedGoogle Scholar
  84. Schipper C, Hornung C, Bijtenhoorn P, Quitschau M, Grond S, Streit WR (2009) Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl Environ Microbiol 75:224–233PubMedPubMedCentralGoogle Scholar
  85. Shepherd RW, Lindow SE (2009) Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 75:45–53PubMedPubMedCentralGoogle Scholar
  86. Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol 10:56–63PubMedGoogle Scholar
  87. Tait K, Williamson H, Atkinson S, Williams P, Cámara M, Joint I (2009) Turnover of quorum sensing signal molecules modulates cross-kingdom signalling. Environ Microbiol 11:1792–1802PubMedGoogle Scholar
  88. Tang K, Zhang Y, Yu M, Shi X, Coenye T, Bossier P, Zhang XH (2013) Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Sci Rep 3:2935PubMedPubMedCentralGoogle Scholar
  89. Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572PubMedPubMedCentralGoogle Scholar
  90. Terwagne M, Mirabella A, Lemaire J, Deschamps C, De Bolle X, Letesson JJ (2013) Quorum sensing and self-quorum quenching in the intracellular pathogen Brucella melitensis. PLoS ONE 8:e82514PubMedPubMedCentralGoogle Scholar
  91. Tinh NT, Asanka Gunasekara RA, Boon N, Dierckens K, Sorgeloos P, Bossier P (2007) N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures. FEMS Microbiol Ecol 62:45–53PubMedGoogle Scholar
  92. Tinh NTN, Yen VHN, Dierckens K, Sorgeloos P, Bossier P (2008) An acyl homoserine lactone–degrading microbial community improves the survival of first feeding turbot larvae (Scophthalmus maximus L.). Aquaculture 285:56–62Google Scholar
  93. Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322PubMedGoogle Scholar
  94. Uroz S, Oger P, Chhabra SR, Camara M, Williams P, Dessaux Y (2007) N-acyl homoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1. Arch Microbiol 187:249–256PubMedGoogle Scholar
  95. Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74:1357–1366PubMedPubMedCentralGoogle Scholar
  96. Vanjildorj E, Song SY, Yang ZH, Choi JE, Noh YS, Park S, Lim WJ, Cho KM, Yun HD, Lim YP (2009) Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep 28:1581–1591PubMedGoogle Scholar
  97. Wahjudi M, Papaioannou E, Hendrawati O, van Assen AH, van Merkerk R, Cool RH, Poelarends GJ, Quax WJ (2011) PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology 157:2042–2055PubMedGoogle Scholar
  98. Wang WZ, Morohoshi T, Ikenoya M, Someya N, Ikeda T (2010) AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Appl Environ Microbiol 76:2524–2530PubMedPubMedCentralGoogle Scholar
  99. Wang WZ, Morohoshi T, Someya N, Ikeda T (2012) AidC, a novel N-acylhomoserine lactonase from the potato root-associated Cytophaga-Flavobacteria-Bacteroides (CFB) group bacterium Chryseobacterium sp. strain StRB126. Appl Environ Microbiol 78:7985–7992PubMedPubMedCentralGoogle Scholar
  100. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Phil Trans R Soc B 362:1119–1134PubMedPubMedCentralGoogle Scholar
  101. Xavier KB, Miller ST, Lu W, Kim JH, Rabinowitz J, Pelczer I, Semmelhack MF, Bassler BL (2007) Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem Biol 2:128–136PubMedGoogle Scholar
  102. Xue T, Zhao L, Sun H, Zhou X, Sun B (2009) LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Res 19:1258–1268PubMedGoogle Scholar
  103. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H, Williams P (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646PubMedPubMedCentralGoogle Scholar
  104. Yoon JH, Lee JK, Jung SY, Kim JA, Kim HK, Oh TK (2006) Nocardioides kongjuensis sp. nov., an N-acylhomoserine lactone-degrading bacterium. Int J Syst Evol Microbiol 56:1783–1787PubMedGoogle Scholar
  105. Zakataeva NP, Aleshin VV, Tokmakova IL, Troshin PV, Livshits VA (1999) The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett 452:228–232PubMedGoogle Scholar
  106. Zhang HB, Wang LH, Zhang LH (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99:4638–4643PubMedPubMedCentralGoogle Scholar
  107. Zhao C, Zeng H, Yu Z, Sun M (2008) N-Acyl homoserine lactonase promotes prevention of Erwinia virulence with zwittermicin A-producing strain Bacillus cereus. Biotechnol Bioeng 100:599–603PubMedGoogle Scholar
  108. Zhu C, Yu Z, Sun M (2006) Restraining Erwinia virulence by expression of N-acyl homoserine lactonase gene pro3A-aiiA in Bacillus thuringiensis subsp leesis. Biotechnol Bioeng 95:526–532PubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Manuel Romero
    • 1
  • Celia Mayer
    • 2
  • Andrea Muras
    • 2
  • Ana Otero
    • 2
  1. 1.School of Life Sciences, Centre for Biomolecular SciencesUniversity of NottinghamNottinghamUK
  2. 2.Departamento de Microbioloxía e ParasitoloxíaUniversidade de Santiago de Compostela, Facultade de Bioloxía (CIBUS)Santiago de CompostelaSpain

Personalised recommendations