Strategies for Silencing Bacterial Communication

  • Kristina Ivanova
  • Margarida M. Fernandes
  • Tzanko Tzanov


Recent advances in microbiology have revealed that bacteria are able to communicate and cooperate in a wide range of multicellular behaviors such as dispersal, foraging and biofilm formation, in a process called quorum sensing (QS). In the QS-regulated communication, bacteria produce and secrete small signaling molecules – autoinducers that are recognised by specific receptors. Gram-negative bacteria secrete acyl-homoserine lactones (AHLs) that in threshold concentrations penetrate into the cells and activate cognate intracellular AHL receptors, while gram-positive bacteria produce autoinducing peptides that are detected by the cell membrane histidine kinase receptor. However, not all bacterial communication is species specific. Bacteria also possess a receptor for the signals sent out by other bacteria species. The knowledge about how this intra- and inter-species communication occurs has been increasingly used to develop new strategies for fighting infectious diseases. This chapter summarises recent advances for silencing cell-to-cell communication as a new approach for the prevention of bacterial diseases.


Quorum Sense Quorum Sense System Quorum Sense Signal Acyl Side Chain Quorum Sense Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the European project “Novel approaches for prevention of biofilms formed on medical indwelling devices, e.g. catheters” (FP7-27840). K.I. would like to thank Generalitat de Catalunya for providing her the Ph.D. grant (FI_B1 00188) and M.M.F. acknowledges the Marie Curie Intra-European Fellowship (IEF) NanoQuench (FP7-331416).


  1. Alfaro JF, Zhang T, Wynn DP, Karschner EL, Zhou ZS (2004) Synthesis of LuxS inhibitors targeting bacterial cell-cell communication. Org Lett 6(18):3043–3046. doi: 10.1021/ol049182i PubMedGoogle Scholar
  2. Amara N, Krom BP, Kaufmann GF, Meijler MM (2010) Macromolecular inhibition of Quorum sensing: enzymes, antibodies, and beyond. Chem Rev 111(1):195–208. doi: 10.1021/cr100101c PubMedGoogle Scholar
  3. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6(40):959–978PubMedPubMedCentralGoogle Scholar
  4. Atkinson S, Throup JP, Stewart GS, Williams P (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33(6):1267–1277PubMedGoogle Scholar
  5. Baron S (ed) (1996) Medical microbiology, 4th edn. The University of Texas, GalvestonGoogle Scholar
  6. Benneche T, Hussain Z, Aamdal Scheie A, Lonn-Stensrud J (2008) Synthesis of 5-(bromomethylene)furan-2(5H)-ones and 3-(bromomethylene)isobenzofuran-1(3H)-ones as inhibitors of microbial quorum sensing. New J Chem 32(9):1567–1572. doi: 10.1039/b803926g Google Scholar
  7. Brackman G, Celen S, Baruah K, Bossier P, Van Calenbergh S, Nelis HJ, Coenye T (2009) AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ. Microbiology 155(12):4114–4122. doi: 10.1099/mic.0.032474-0 PubMedGoogle Scholar
  8. Brackman G, Al Quntar AAA, Enk CD, Karalic I, Nelis HJ, Van Calenbergh S, Srebnik M, Coenye T (2013) Synthesis and evaluation of thiazolidinedione and dioxazaborocane analogues as inhibitors of AI-2 quorum sensing in Vibrio harveyi. Bioorg Med Chem 21(3):660–667. doi: PubMedGoogle Scholar
  9. Byers JT, Lucas C, Salmond GPC, Welch M (2002) Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 184(4):1163–1171PubMedPubMedCentralGoogle Scholar
  10. Calfee MW, Coleman JP, Pesci EC (2001) Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci 98(20):11633–11637. doi: 10.1073/pnas.201328498 PubMedPubMedCentralGoogle Scholar
  11. Camps J, Pujol I, Ballester F, Joven J, Simó JM (2011) Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in gram-negative bacteria. Antimicrob Agents Chemother 55(4):1325–1331PubMedPubMedCentralGoogle Scholar
  12. Cao JG, Meighen EA (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem 264(36):21670–21676PubMedGoogle Scholar
  13. Chan YY, Chua KL (2005) The Burkholderia pseudomallei BpeAB-OprB Efflux Pump: expression and impact on quorum sensing and virulence. J Bacteriol 187(14):4707–4719. doi: 10.1128/jb.187.14.4707-4719.2005 PubMedPubMedCentralGoogle Scholar
  14. Chan K-G, Atkinson S, Mathee K, Sam C-K, Chhabra SR, Cámara M, Koh C-L, Williams P (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11(1):51PubMedPubMedCentralGoogle Scholar
  15. Chenia HY (2013) Anti-quorum sensing potential of crude Kigelia Africana fruit extracts. Sensors (Basel, Switzerland) 13(3):2802–2817Google Scholar
  16. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86(5):1267–1279. doi: 10.1007/s00253-010-2521-7 PubMedGoogle Scholar
  17. Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon JS, Hwang I, Rhee S (2011) Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc Natl Acad Sci 108(29):12089–12094. doi: 10.1073/pnas.1103165108 PubMedPubMedCentralGoogle Scholar
  18. Churchill MEA, Chen L (2010) Structural basis of acyl-homoserine lactone-dependent signaling. Chem Rev 111(1):68–85. doi: 10.1021/cr1000817 PubMedPubMedCentralGoogle Scholar
  19. De Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11(2):279–288. doi: 10.1111/j.1462-2920.2008.01792.x PubMedGoogle Scholar
  20. De Lamo Marin S, Xu Y, Meijler MM, Janda KD (2007) Antibody catalyzed hydrolysis of a quorum sensing signal found in Gram-negative bacteria. Bioorg Med Chem Lett 17(6):1549–1552. doi: PubMedGoogle Scholar
  21. Defoirdt T, Benneche T, Brackman G, Coenye T, Sorgeloos P, Scheie AA (2012) A quorum sensing-disrupting brominated thiophenone with a promising therapeutic potential to treat luminescent vibriosis. PLoS One 7(7):e41788. doi: 10.1371/journal.pone.0041788 PubMedPubMedCentralGoogle Scholar
  22. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813–817PubMedGoogle Scholar
  23. Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol Ecol 72(1):22–34. doi: 10.1111/j.1574-6941.2009.00828.x PubMedGoogle Scholar
  24. Fux CA, Costerton JW et al (2005) Survival strategies of infectious biofilms. Trends Microbiol 13(1):34–40PubMedGoogle Scholar
  25. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2010) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111(1):28–67. doi: 10.1021/cr100109t PubMedGoogle Scholar
  26. Galloway WRJD, Hodgkinson JT, Bowden S, Welch M, Spring DR (2012) Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 20(9):449–458. doi: PubMedGoogle Scholar
  27. Gamby S, Roy V, Guo M, Smith JAI, Wang J, Stewart JE, Wang X, Bentley WE, Sintim HO (2012) Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem Biol 7(6):1023–1030PubMedGoogle Scholar
  28. Geske GD, Mattmann ME, Blackwell HE (2008) Evaluation of a focused library of N-aryl l-homoserine lactones reveals a new set of potent quorum sensing modulators. Bioorg Med Chem Lett 18(22):5978–5981. doi: PubMedPubMedCentralGoogle Scholar
  29. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178(22):6618–6622PubMedPubMedCentralGoogle Scholar
  30. Guo M, Gamby S, Nakayama S, Smith J, Sintim HO (2012) A pro-drug approach for selective modulation of AI-2-mediated bacterial cell-to-cell communication. Sensors 12(3):3762–3772PubMedPubMedCentralGoogle Scholar
  31. Guo M, Gamby S, Zheng Y, Sintim H (2013) Small molecule inhibitors of AI-2 signaling in bacteria: state-of-the-art and future perspectives for anti-quorum sensing agents. Int J Mol Sci 14(9):17694–17728PubMedPubMedCentralGoogle Scholar
  32. Haudecoeur E, Faure D (2010) A fine control of quorum-sensing communication in Agrobacterium tumefaciens. Commun Integr Biol 3(2):84–88PubMedPubMedCentralGoogle Scholar
  33. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307. doi: 10.1172/jci20074 PubMedPubMedCentralGoogle Scholar
  34. Hong K-W, Koh C-L, Sam C-K, Yin W-F, Chan K-G (2012) Quorum quenching revisited—from signal decays to signalling confusion. Sensors 12(4):4661–4696PubMedPubMedCentralGoogle Scholar
  35. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69(10):5941–5949PubMedPubMedCentralGoogle Scholar
  36. Ishida T, Ikeda T, Takiguchi N, Kuroda A, Ohtake H, Kato J (2007) Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl Environ Microbiol 73(10):3183–3188PubMedPubMedCentralGoogle Scholar
  37. Ivanova K, Fernandes MM et al (2013) Current advances on bacterial pathogenesis inhibition and treatment strategies. Microbial pathogens and strategies for combating them: science, technology and education. Mendez-Vilas A (ed), vol 1, pp 322–336. Formatex Research Center, BadajozGoogle Scholar
  38. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245. doi: PubMedGoogle Scholar
  39. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37(2):121–140PubMedGoogle Scholar
  40. Kang-Mu LEE, Wan-Seok KIM, Jeesun LIM, Sunyoung NAM, Youn MIN, Seong-Won NAM, Younghoon KIM, Sae-Hun KIM, Park W, Park S (2009) Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic escherichia coli O157:H7. J Food Prot 72(2):325–331Google Scholar
  41. Kaufmann GF, Sartorio R, Lee S-H, Mee JM, Altobell LJ, Kujawa DP, Jeffries E, Clapham B, Meijler MM, Janda KD (2006) Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc 128(9):2802–2803. doi: 10.1021/ja0578698 PubMedPubMedCentralGoogle Scholar
  42. Kaufmann GF, Park J et al (2008) The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of the Pseudomonas aeruginosa quorum sensing signalling molecule N-3-oxo-dodecanoyl-homoserine lactone. Mol Immunol 45(9):2710–2714PubMedPubMedCentralGoogle Scholar
  43. Kim C, Kim J, Park H-Y, Lee J-H, Park H-J, Kim C, Yoon J (2009a) Structural understanding of quorum-sensing inhibitors by molecular modeling study in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 83(6):1095–1103. doi: 10.1007/s00253-009-1954-3 PubMedGoogle Scholar
  44. Kim C, Kim J, Park H-Y, Park H-J, Kim C, Yoon J, Lee J-H (2009b) Development of inhibitors against TraR quorum-sensing system in Agrobacterium tumefaciens by molecular modeling of the ligand-receptor interaction. Mol Cells 28(5):447–453. doi: 10.1007/s10059-009-0144-6 PubMedGoogle Scholar
  45. Kiran S, Sharma P, Harjai K, Capalash N (2011) Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa. Iran J Microbiol 3(1):1–12PubMedPubMedCentralGoogle Scholar
  46. Kirwan JP, Gould TA, Schweizer HP, Bearden SW, Murphy RC, Churchill MEA (2006) Quorum-sensing signal synthesis by the Yersinia pestis acyl-homoserine lactone synthase YspI. J Bacteriol 188(2):784–788PubMedPubMedCentralGoogle Scholar
  47. Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M (2005) The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology 151(11):3589–3602. doi: 10.1099/mic.0.27954-0 PubMedGoogle Scholar
  48. Kociolek MG (2009) Quorum-sensing inhibitors and biofilms. Anti-Infect Agent Med Chem 8(4):315–326. doi: 10.2174/187152109789760117 Google Scholar
  49. Kulanthaivel P, Kreuzman AJ et al (2004) Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. J Biol Chem 279(35):36250–36258PubMedGoogle Scholar
  50. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77(1):73–111. doi: 10.1128/mmbr.00046-12 PubMedPubMedCentralGoogle Scholar
  51. Leonard Amaral JM (2012) Inhibitors of efflux pumps of Gram-negative bacteria inhibit Quorum Sensing. Open J Pharmacol 3Google Scholar
  52. Lesic B, Lépine F, Déziel E, Zhang J, Zhang Q, Padfield K, Castonguay M-H, Milot S, Stachel S, Tzika AA, Tompkins RG, Rahme LG (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3(9):e126. doi: 10.1371/journal.ppat.0030126 PubMedCentralGoogle Scholar
  53. Li J, Wang W, Xu SX, Magarvey NA, McCormick JK (2011) Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci 108(8):3360–3365. doi: 10.1073/pnas.1017431108 PubMedPubMedCentralGoogle Scholar
  54. Lin YH, Xu JL, Hu J, Wang LH, Leong Ong S, Renton Leadbetter J, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47(3):849–860PubMedGoogle Scholar
  55. Lowery CA, Park J, Kaufmann GF, Janda KD (2008) An unexpected switch in the modulation of AI-2-based quorum sensing discovered through synthetic 4,5-dihydroxy-2,3-pentanedione analogues. J Am Chem Soc 130(29):9200–9201. doi: 10.1021/ja802353j PubMedPubMedCentralGoogle Scholar
  56. Lowery CA, Abe T, Park J, Eubanks LM, Sawada D, Kaufmann GF, Janda KD (2009) Revisiting AI-2 quorum sensing inhibitors: direct comparison of Alkyl-DPD analogues and a natural product fimbrolide. J Am Chem Soc 131(43):15584–15585. doi: 10.1021/ja9066783 PubMedPubMedCentralGoogle Scholar
  57. Lupp C, Ruby EG (2005) Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J Bacteriol 187(11):3620–3629PubMedPubMedCentralGoogle Scholar
  58. Lyon GJ, Mayville P, Muir TW, Novick RP (2000) Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci 97(24):13330–13335. doi: 10.1073/pnas.97.24.13330 PubMedPubMedCentralGoogle Scholar
  59. Lyon GJ, Wright JS, Muir TW, Novick RP (2002) Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41(31):10095–10104. doi: 10.1021/bi026049u PubMedGoogle Scholar
  60. Malladi VLA, Sobczak AJ, Meyer TM, Pei D, Wnuk SF (2011) Inhibition of LuxS by S-ribosylhomocysteine analogues containing a [4-aza]ribose ring. Bioorg Med Chem 19(18):5507–5519. doi: PubMedPubMedCentralGoogle Scholar
  61. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(Pt 12):3703–3711PubMedGoogle Scholar
  62. Mihalik K, Chung DW, Crixell SH, McLean RJC, Vattem DA (2008) Quorum sensing modulators of Pseudomonas aeruginosa characterized in Camellia sinensis. Asian J Trad Med 3, 12–23Google Scholar
  63. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15(5):677–687PubMedGoogle Scholar
  64. Molnar A, Wolfart K, Kawase M, Motohashi N, Molnar J (2004) Effect of a trifluoromethyl ketone on the motility of proton pump-deleted mutant of Escherichia coli strain and its wild-type. Vivo 18(4):505–507Google Scholar
  65. Moore JD, Gerdt JP, Eibergen NR, Blackwell HE (2014) Active efflux influences the potency of quorum sensing inhibitors in pseudomonas aeruginosa. ChemBioChem 15(3):435–442. doi: 10.1002/cbic.201300701 PubMedGoogle Scholar
  66. Morohoshi T, Shiono T et al (2007) Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Appl Environ Microbiol 73(20):6339–6344PubMedPubMedCentralGoogle Scholar
  67. Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29(6):1391–1405PubMedGoogle Scholar
  68. Ni N, Chou H-T, Wang J, Li M, Lu C-D, Tai PC, Wang B (2008a) Identification of boronic acids as antagonists of bacterial quorum sensing in Vibrio harveyi. Biochem Biophys Res Commun 369(2):590–594. doi: PubMedGoogle Scholar
  69. Ni N, Choudhary G, Li M, Wang B (2008b) Pyrogallol and its analogs can antagonize bacterial quorum sensing in Vibrio harveyi. Bioorg Med Chem Lett 18(5):1567–1572. doi: PubMedGoogle Scholar
  70. Ni N, Choudhary G, Peng H, Li M, Chou H-T, Lu C-D, Gilbert ES, Wang B (2009a) Inhibition of quorum sensing in Vibrio harveyi by boronic acids. Chem Biol Drug Des 74(1):51–56. doi: 10.1111/j.1747-0285.2009.00834.x PubMedGoogle Scholar
  71. Ni N, Li M, Wang J, Wang B (2009b) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29(1):65–124. doi: 10.1002/med.20145 PubMedGoogle Scholar
  72. O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci 110(44):17981–17986. doi: 10.1073/pnas.1316981110 PubMedPubMedCentralGoogle Scholar
  73. Olsen JA, Severinsen R, Rasmussen TB, Hentzer M, Givskov M, Nielsen J (2002) Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett 12(3):325–328. doi: PubMedGoogle Scholar
  74. Otto M, Süßmuth R, Vuong C, Jung G, Götz F (1999) Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett 450(3):257–262PubMedGoogle Scholar
  75. Park J, Jagasia R et al (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14(10):1119–1127PubMedPubMedCentralGoogle Scholar
  76. Parker CT, Sperandio V (2009) Cell-to-cell signalling during pathogenesis. Cell Microbiol 11(3):363–369. doi: 10.1111/j.1462-5822.2008.01272.x PubMedPubMedCentralGoogle Scholar
  77. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 96(8):4360–4365PubMedPubMedCentralGoogle Scholar
  78. Peeters E, Nelis H, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72(2):157–165PubMedGoogle Scholar
  79. Peng H, Cheng Y, Ni N, Li M, Choudhary G, Chou HT, Lu C-D, Tai PC, Wang B (2009) Synthesis and evaluation of new antagonists of bacterial quorum sensing in Vibrio harveyi. ChemMedChem 4(9):1457–1468. doi: 10.1002/cmdc.200900180 PubMedGoogle Scholar
  80. Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37(2):156–181. doi: 10.1111/j.1574-6976.2012.00345.x PubMedGoogle Scholar
  81. Piletska EV, Stavroulakis G, Karim K, Whitcombe MJ, Chianella I, Sharma A, Eboigbodin KE, Robinson GK, Piletsky SA (2010) Attenuation of Vibrio fischeri quorum sensing using rationally designed polymers. Biomacromolecules 11(4):975–980. doi: 10.1021/bm901451j PubMedGoogle Scholar
  82. Piletska EV et al (2011) Passive control of quorum sensing: prevention of Pseudomonas aeruginosa biofilm formation by imprinted polymers. Biomacromolecules 12(4):1067–1071PubMedGoogle Scholar
  83. Pustelny C, Albers A, Büldt-Karentzopoulos K, Parschat K, Chhabra SR, Cámara M, Williams P, Fetzner S (2009) Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 16(12):1259–1267PubMedGoogle Scholar
  84. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9(2):117–128PubMedGoogle Scholar
  85. Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152(4):895–904PubMedGoogle Scholar
  86. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005a) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187(5):1799–1814PubMedPubMedCentralGoogle Scholar
  87. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005b) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151(5):1325–1340. doi: 10.1099/mic.0.27715-0 PubMedGoogle Scholar
  88. Relman DA (2012) Microbiology: learning about who we are. Nature 486(7402):194–195PubMedGoogle Scholar
  89. Roche DM, Byers JT, Smith DS, Glansdorp FG, Spring DR, Welch M (2004) Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 150(7):2023–2028PubMedGoogle Scholar
  90. Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J (2013) Antibiotics and antibiotic resistance: a bitter fight against evolution. Int J Med Microbiol 303(6–7):293–297. doi: PubMedGoogle Scholar
  91. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspect Med 2(11)Google Scholar
  92. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. Research Repository.
  93. Sawada I, Maseda H, Nakae T, Uchiyama H, Nomura N (2004) A quorum-sensing autoinducer enhances the mexAB-oprM efflux-pump expression without the MexR-mediated regulation in Pseudomonas aeruginosa. Microbiol Immunol 48(5):435–439. doi: 10.1111/j.1348-0421.2004.tb03533.x PubMedGoogle Scholar
  94. Shen G, Rajan R, Zhu J, Bell CE, Pei D (2006) Design and synthesis of substrate and intermediate analogue inhibitors of S-ribosylhomocysteinase. J Med Chem 49(10):3003–3011. doi: 10.1021/jm060047g PubMedGoogle Scholar
  95. Sintim HO, Smith JAI, Wang J, Nakayama S, Yan L (2010) Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem 2(6):1005–1035. doi: 10.4155/fmc.10.185 PubMedGoogle Scholar
  96. Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PO, Rasmussen TB, Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52(10):3648–3663PubMedPubMedCentralGoogle Scholar
  97. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6(1):56–60. doi: PubMedGoogle Scholar
  98. Sokol PA, Sajjan U, Visser MB, Gingues S, Forstner J, Kooi C (2003) The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology 149(Pt 12):3649–3658PubMedGoogle Scholar
  99. Spengler G, Molnár A, Klausz G, Mándi Y, Kawase M, Motohashi N, Molnár J (2004) The antimotility action of a trifluoromethyl ketone on some gram-negative bacteria. Acta Microbiol Immunol Hung 51(3):351–358. doi: 10.1556/AMicr.51.2004.3.12 PubMedGoogle Scholar
  100. Tal-Gan Y, Stacy DM, Foegen MK, Koenig DW, Blackwell HE (2013) Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed through a systematic synthetic study of the Group-III autoinducing peptide. J Am Chem Soc 135(21):7869–7882. doi: 10.1021/ja3112115 PubMedGoogle Scholar
  101. Tay S, Yew W (2013) Development of quorum-based anti-virulence therapeutics targeting gram-negative bacterial pathogens. Int J Mol Sci 14(8):16570–16599PubMedPubMedCentralGoogle Scholar
  102. Teiber JF, Horke S, Haines DC, Chowdhary PK, Xiao J, Kramer GL, Haley RW, Draganov DI (2008) Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 76(6):2512–2519PubMedPubMedCentralGoogle Scholar
  103. Tsuchikama K, Lowery CA, Janda KD (2011) Probing autoinducer-2 based quorum sensing: the biological consequences of molecules unable to traverse equilibrium states. J Org Chem 76(17):6981–6989. doi: 10.1021/jo200882k PubMedPubMedCentralGoogle Scholar
  104. Uroz S, Chhabra SR, Cámara M, Williams P, Oger P, Dessaux Y (2005) N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151(10):3313–3322PubMedGoogle Scholar
  105. Varga ZG, Armada A, Cerca P, Amaral L, Mior Ahmad Subki MA, Savka MA, Szegedi E, Kawase M, Motohashi N, Molnar J (2012) Inhibition of quorum sensing and efflux pump system by trifluoromethyl ketone proton pump inhibitors. Vivo 26(2):277–285Google Scholar
  106. Wang W, Morohoshi T, Ikeda T, Chen L (2008) Inhibition of Lux quorum-sensing system by synthetic N-acyl-L-homoserine lactone analogous. Acta Biochim Biophys Sin 40(12):1023–1028. doi: 10.1111/j.1745-7270.2008.00490.x PubMedGoogle Scholar
  107. Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill MEA (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9(3):685–694. doi: PubMedGoogle Scholar
  108. Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51(1):9–11. doi: 10.1093/jac/dkg050 PubMedGoogle Scholar
  109. Welch M, Dutton JM, Glansdorp FG, Thomas GL, Smith DS, Coulthurst SJ, Barnard AML, Salmond GPC, Spring DR (2005) Structure activity relationships of Erwinia carotovora quorum sensing signaling molecules. Bioorg Med Chem Lett 15(19):4235–4238PubMedGoogle Scholar
  110. Wolfart K, Molnar A, Kawase M, Motohashi N, Molnar J (2004) Effects of trifluoromethyl ketones on the motility of Proteus vulgaris. Biol Pharma Bull 27(9):1462–1464Google Scholar
  111. Wright JS, Jin R, Novick RP (2005) Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci U S A 102(5):1691–1696. doi: 10.1073/pnas.0407661102 PubMedPubMedCentralGoogle Scholar
  112. Wu H, Song Z et al (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53(6):1054–1061Google Scholar
  113. Xavier KB, Bassler BL (2005) Interference with AI-2-mediated bacterial cell-cell communication. Nature 437(7059):750–753PubMedPubMedCentralGoogle Scholar
  114. Xu F, Byun T, Dussen H-J, Duke KR (2003) Degradation of N-acylhomoserine lactones, the bacterial quorum-sensing molecules, by acylase. J Biotechnol 101(1):89–96. doi: PubMedGoogle Scholar
  115. Yang Y-X, Xu Z-H, Zhang Y-Q, Tian J, Weng L-X, Wang L-H (2012) A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. J Microbiol 50(6):987–993. doi: 10.1007/s12275-012-2149-7 PubMedGoogle Scholar
  116. Zang T, Lee BWK, Cannon LM, Ritter KA, Dai S, Ren D, Wood TK, Zhou ZS (2009) A naturally occurring brominated furanone covalently modifies and inactivates LuxS. Bioorg Med Chem Lett 19(21):6200–6204. doi: PubMedPubMedCentralGoogle Scholar
  117. Zhang Z, Pierson LS (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67(9):4305–4315PubMedPubMedCentralGoogle Scholar
  118. Zhu L, Lau GW (2011) Inhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptide. PLoS Pathog 7(9):e1002241. doi: 10.1371/journal.ppat.1002241 PubMedPubMedCentralGoogle Scholar
  119. Zhu P, Peng H, Ni N, Wang B, Li M (2012) Novel AI-2 quorum sensing inhibitors in Vibrio harveyi identified through structure-based virtual screening. Bioorg Med Chem Lett 22(20):6413–6417. doi: PubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Kristina Ivanova
    • 1
  • Margarida M. Fernandes
    • 1
  • Tzanko Tzanov
    • 1
  1. 1.Group of Molecular and Industrial Biotechnology, Department of Chemical EngineeringUniversitat Polìtecnica de CatalunyaTerrassaSpain

Personalised recommendations