Skip to main content

Quorum-Sensing Systems in Enterococci

  • Chapter
  • First Online:
Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight

Abstract

Enterococcus is a genus of Gram-positive bacteria that is ubiquitous in natural ecosystems, plants, and animals. Some species of Enterococcus are present in the normal gastrointestinal bacterial community. However, others notably Enterococcus faecalis and Enterococcus faecium often cause opportunistic infections such as bacteremia, endocarditis, urinary tract infections, posttreatment endodontic infections, and endophthalmitis (Arias et al. 2010). Bacteria often use quorum sensing (QS) systems to control the expression of certain virulence genes and establish infection efficiently (Waters and Bassler 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antiporta M, Dunny G (2002) ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis. J Bacteriol 184:1155–1162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arias CA, Contreras GA, Murray BE (2010) Management of multi-drug resistant enterococcal infections. Clin Microbiol Infect 16:555–562

    Article  PubMed  CAS  Google Scholar 

  • Bourgogne A, Hilsenbeck SG, Dunny GM, Murray BE (2006) Comparison of OG1RF and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of Enterococcus faecalis is more than the activator of gelatinase and serine protease. J Bacteriol 188:2875–2884

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chandler JR, Dunny GM (2008) Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. J Bacteriol 190:1172–1183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chandler JR, Hirt H, Dunny GM (2005) A paracrine peptide sex pheromone also acts as an autocrine signal to induce plasmid transfer and virulence factor expression in vivo. Proc Natl Acad Sci USA 102:15617–15622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chatterjee A, Cook LC, Shu CC, Chen Y, Manias DA, Ramkrishna D, Dunny GM, Hu WS (2013) Antagonistic self-sensing and mate-sensing signaling controls antibiotic resistance transfer. Proc Natl Acad Sci USA 110:7086–7090

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chuang O, Schlievert P, Wells CL, Manias DA, Tripp TJ, Dunny GM (2009) Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect Immun 77:539–548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chuang-Smith O, Wells C, Henry-Stanley M, Dunny GM (2010) Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One 5:e15798

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clewell DB, Weaver KE, Dunny GM, Coque TM, Francia MV, Hayes F (2014) Extrachromosomal and mobile elements in enterococci: transmission, maintenance, and epidemiology. In: Clewell DB, Shankar N, Ike Y, Gilmore M (eds) Enterococci: from commensals to leading causes of drug resistant infection [Internet]. Massachusetts Eye and Ear Infirmary, Boston

    Google Scholar 

  • Coburn PS, Gilmore MS (2003) The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol 5:661–669

    Article  PubMed  CAS  Google Scholar 

  • Coburn PS, Pillar CM, Jett BD, Haas W, Gilmore MS (2004) Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306:2270–2272

    Article  PubMed  CAS  Google Scholar 

  • Cook LC, Federle MJ (2013) Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 38:473–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunny GM (2013) Enterococcal sex pheromones: signaling, social behavior, and evolution. Annu Rev Gen 47:457–482

    Article  CAS  Google Scholar 

  • Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75:3479–3483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Engelbert M, Mylonakis E, Ausubel FM, Calderwood SB, Gilmore MS (2004) Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72:3628–3633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haas W, Shepard BD, Gilmore MS (2002) Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87

    Article  PubMed  CAS  Google Scholar 

  • Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186:5629–5639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hirt H, Erlandsen SL, Dunny GM (2000) Heterologous inducible expression of Enterococcus faecalis pCF10 aggregation substance Asc10 in Lactococcus lactis and Streptococcus gordonii contributes to cell hydrophobicity and adhesion to fibrin. J Bacteriol 182:2299–2306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horinouchi S, Ueda K, Nakayama J, Ikeda T (2010) Cell-to-cell communications among microorganisms. In: Mander L, Liu HW (eds) Comprehensive natural products II, vol 4. Elsevier Science, Amsterdam, pp 283–337

    Chapter  Google Scholar 

  • Kozlowicz BK, Shi K, Gu ZY, Ohlendorf DH, Earhart CA, Dunny GM (2006) Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol Microbiol 62:958–969

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leonard BA, Podbielski A, Hedberg PJ, Dunny GM (1996) Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc Natl Acad Sci USA 93:260–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakayama J, Suzuki A (1997) Genetic analysis of plasmid-specific pheromone signaling encoded by pPD1 in Enterococcus faecalis. Biosci Biotechnol Biochem 61:1796–1799

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Yoshida K, Kobayashi H, Isogai A, Clewell DB, Suzuki A (1995) Cloning and characterization of a region of Enterococcus faecalis plasmid pPD1 encoding pheromone inhibitor (ipd), pheromone sensitivity (traC), and pheromone shutdown (traB) genes. J Bacteriol 177:5567–5573

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakayama J, Takanami Y, Horii T, Sakuda S, Suzuki A (1998) Molecular mechanism of peptide-specific pheromone signaling in Enterococcus faecalis: functions of pheromone receptor TraA and pheromone-binding protein TraC encoded by plasmid pPD1. J Bacteriol 180:449–456

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakayama J, Horii T, Suzuki A (1999) Bacterial peptide pheromone is imported where it directly binds to an intracellular receptor. In: Proceedings of the 1st international peptide symposium 1997, in press. Kluwer Academic Publishers, BV, Dordrecht, pp 215–217

    Google Scholar 

  • Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, de Vos WM, Nagasawa H (2001) Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 41:145–154

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Kariyama R, Kumon H (2002) Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine. Appl Environ Microbiol 68:3152–3155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakayama J, Chen S, Oyama N, Nishiguchi K, Azab EA, Tanaka E, Kariyama R, Sonomoto K (2006) Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal AgrD. J Bacteriol 188:8321–8326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakayama J, Yokohata R, Sato M, Suzuki T, Matsufuji T, Nishiguchi K, Kawai T, Yamanaka Y, Nagata K, Tanokura M, Sonomoto K (2013) Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. ACS Chem Biol 8:804–811

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi K, Nagata K, Tanokura M, Sonomoto K, Nakayama J (2009) Structure-activity relationship of gelatinase biosynthesis-activating pheromone of Enterococcus faecalis. J Bacteriol 191:641–650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Shin YP, Kim CH, Park HJ, Seong YS, Kim BS, Seo SJ, Lee IH (2008) Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J Immunol 181:6328–6336

    Article  PubMed  CAS  Google Scholar 

  • Pinkston KL, Gao P, Diaz-Garcia D, Sillanpää J, Nallapareddy SR, Murray BE, Harvey BR (2011) The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. J Bacteriol 193:4317–4325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qin X, Singh KV, Weinstock GM, Murray BE (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roberts JC, Singh KV, Okhuysen PC, Murray BE (2004) Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates. J Clin Microbiol 42:2317–2320

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168

    Article  PubMed  CAS  Google Scholar 

  • Shi K, Brown CK, Gu ZY, Kozlowicz BK, Dunny GM, Ohlendorf DH, Earhart CA (2005) Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proc Natl Acad Sci USA 102:18596–18601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Strzelecki J, Hryniewicz W, Sadowy E (2011) Gelatinase-associated phenotypes and genotypes among clinical isolates of Enterococcus faecalis in Poland. Polish J Microbiol 60:287–292

    CAS  Google Scholar 

  • Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE (2009) A fratricidal mechanism is responsible for eDNA release and contributes to biofilm envelopment of Enterococcus faecalis. Mol Microbiol 72:1022–1036

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, Hancock LE (2010) Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect Immun 78:4936–4943

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Antiporta MH, Murray BE, Dunny GM (2003) Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins. J Bacteriol 185:3613–3623

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wuster A, Babu MM (2008) Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J Bacteriol 190:743–746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeng J, Teng F, Murray BE (2005) Gelatinase is important for translocation of Enterococcus faecalis across polarized human enterocyte-like T84 cells. Infect Immun 73:1606–1612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Grants-in-Aid for Scientific Research (B) No. 24380050 and Grant-in-Aid for JSPS Fellows No. 25–03389.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Singh, R.P., Nakayama, J. (2015). Quorum-Sensing Systems in Enterococci. In: Kalia, V. (eds) Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1982-8_14

Download citation

Publish with us

Policies and ethics