Quorum-Sensing Systems in Enterococci

  • Ravindra Pal Singh
  • Jiro Nakayama


Enterococcus is a genus of Gram-positive bacteria that is ubiquitous in natural ecosystems, plants, and animals. Some species of Enterococcus are present in the normal gastrointestinal bacterial community. However, others notably Enterococcus faecalis and Enterococcus faecium often cause opportunistic infections such as bacteremia, endocarditis, urinary tract infections, posttreatment endodontic infections, and endophthalmitis (Arias et al. 2010). Bacteria often use quorum sensing (QS) systems to control the expression of certain virulence genes and establish infection efficiently (Waters and Bassler 2005).


Quorum Sense Quorum Sense System Quorum Sense Inhibitor Quorum Sense Gene Complex Microbiota 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported in part by Grants-in-Aid for Scientific Research (B) No. 24380050 and Grant-in-Aid for JSPS Fellows No. 25–03389.


  1. Antiporta M, Dunny G (2002) ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis. J Bacteriol 184:1155–1162PubMedCrossRefPubMedCentralGoogle Scholar
  2. Arias CA, Contreras GA, Murray BE (2010) Management of multi-drug resistant enterococcal infections. Clin Microbiol Infect 16:555–562PubMedCrossRefGoogle Scholar
  3. Bourgogne A, Hilsenbeck SG, Dunny GM, Murray BE (2006) Comparison of OG1RF and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of Enterococcus faecalis is more than the activator of gelatinase and serine protease. J Bacteriol 188:2875–2884PubMedCrossRefPubMedCentralGoogle Scholar
  4. Chandler JR, Dunny GM (2008) Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. J Bacteriol 190:1172–1183PubMedCrossRefPubMedCentralGoogle Scholar
  5. Chandler JR, Hirt H, Dunny GM (2005) A paracrine peptide sex pheromone also acts as an autocrine signal to induce plasmid transfer and virulence factor expression in vivo. Proc Natl Acad Sci USA 102:15617–15622PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chatterjee A, Cook LC, Shu CC, Chen Y, Manias DA, Ramkrishna D, Dunny GM, Hu WS (2013) Antagonistic self-sensing and mate-sensing signaling controls antibiotic resistance transfer. Proc Natl Acad Sci USA 110:7086–7090PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chuang O, Schlievert P, Wells CL, Manias DA, Tripp TJ, Dunny GM (2009) Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect Immun 77:539–548PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chuang-Smith O, Wells C, Henry-Stanley M, Dunny GM (2010) Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One 5:e15798PubMedCrossRefPubMedCentralGoogle Scholar
  9. Clewell DB, Weaver KE, Dunny GM, Coque TM, Francia MV, Hayes F (2014) Extrachromosomal and mobile elements in enterococci: transmission, maintenance, and epidemiology. In: Clewell DB, Shankar N, Ike Y, Gilmore M (eds) Enterococci: from commensals to leading causes of drug resistant infection [Internet]. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  10. Coburn PS, Gilmore MS (2003) The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol 5:661–669PubMedCrossRefGoogle Scholar
  11. Coburn PS, Pillar CM, Jett BD, Haas W, Gilmore MS (2004) Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306:2270–2272PubMedCrossRefGoogle Scholar
  12. Cook LC, Federle MJ (2013) Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 38:473–492PubMedCrossRefPubMedCentralGoogle Scholar
  13. Dunny GM (2013) Enterococcal sex pheromones: signaling, social behavior, and evolution. Annu Rev Gen 47:457–482CrossRefGoogle Scholar
  14. Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75:3479–3483PubMedCrossRefPubMedCentralGoogle Scholar
  15. Engelbert M, Mylonakis E, Ausubel FM, Calderwood SB, Gilmore MS (2004) Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72:3628–3633PubMedCrossRefPubMedCentralGoogle Scholar
  16. Haas W, Shepard BD, Gilmore MS (2002) Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87PubMedCrossRefGoogle Scholar
  17. Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186:5629–5639PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hirt H, Erlandsen SL, Dunny GM (2000) Heterologous inducible expression of Enterococcus faecalis pCF10 aggregation substance Asc10 in Lactococcus lactis and Streptococcus gordonii contributes to cell hydrophobicity and adhesion to fibrin. J Bacteriol 182:2299–2306PubMedCrossRefPubMedCentralGoogle Scholar
  19. Horinouchi S, Ueda K, Nakayama J, Ikeda T (2010) Cell-to-cell communications among microorganisms. In: Mander L, Liu HW (eds) Comprehensive natural products II, vol 4. Elsevier Science, Amsterdam, pp 283–337CrossRefGoogle Scholar
  20. Kozlowicz BK, Shi K, Gu ZY, Ohlendorf DH, Earhart CA, Dunny GM (2006) Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol Microbiol 62:958–969PubMedCrossRefPubMedCentralGoogle Scholar
  21. Leonard BA, Podbielski A, Hedberg PJ, Dunny GM (1996) Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc Natl Acad Sci USA 93:260–264PubMedCrossRefPubMedCentralGoogle Scholar
  22. Nakayama J, Suzuki A (1997) Genetic analysis of plasmid-specific pheromone signaling encoded by pPD1 in Enterococcus faecalis. Biosci Biotechnol Biochem 61:1796–1799PubMedCrossRefGoogle Scholar
  23. Nakayama J, Yoshida K, Kobayashi H, Isogai A, Clewell DB, Suzuki A (1995) Cloning and characterization of a region of Enterococcus faecalis plasmid pPD1 encoding pheromone inhibitor (ipd), pheromone sensitivity (traC), and pheromone shutdown (traB) genes. J Bacteriol 177:5567–5573PubMedPubMedCentralGoogle Scholar
  24. Nakayama J, Takanami Y, Horii T, Sakuda S, Suzuki A (1998) Molecular mechanism of peptide-specific pheromone signaling in Enterococcus faecalis: functions of pheromone receptor TraA and pheromone-binding protein TraC encoded by plasmid pPD1. J Bacteriol 180:449–456PubMedPubMedCentralGoogle Scholar
  25. Nakayama J, Horii T, Suzuki A (1999) Bacterial peptide pheromone is imported where it directly binds to an intracellular receptor. In: Proceedings of the 1st international peptide symposium 1997, in press. Kluwer Academic Publishers, BV, Dordrecht, pp 215–217Google Scholar
  26. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, de Vos WM, Nagasawa H (2001) Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 41:145–154PubMedCrossRefGoogle Scholar
  27. Nakayama J, Kariyama R, Kumon H (2002) Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine. Appl Environ Microbiol 68:3152–3155PubMedCrossRefPubMedCentralGoogle Scholar
  28. Nakayama J, Chen S, Oyama N, Nishiguchi K, Azab EA, Tanaka E, Kariyama R, Sonomoto K (2006) Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal AgrD. J Bacteriol 188:8321–8326PubMedCrossRefPubMedCentralGoogle Scholar
  29. Nakayama J, Yokohata R, Sato M, Suzuki T, Matsufuji T, Nishiguchi K, Kawai T, Yamanaka Y, Nagata K, Tanokura M, Sonomoto K (2013) Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. ACS Chem Biol 8:804–811PubMedCrossRefGoogle Scholar
  30. Nishiguchi K, Nagata K, Tanokura M, Sonomoto K, Nakayama J (2009) Structure-activity relationship of gelatinase biosynthesis-activating pheromone of Enterococcus faecalis. J Bacteriol 191:641–650PubMedCrossRefPubMedCentralGoogle Scholar
  31. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449PubMedCrossRefGoogle Scholar
  32. Park SY, Shin YP, Kim CH, Park HJ, Seong YS, Kim BS, Seo SJ, Lee IH (2008) Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J Immunol 181:6328–6336PubMedCrossRefGoogle Scholar
  33. Pinkston KL, Gao P, Diaz-Garcia D, Sillanpää J, Nallapareddy SR, Murray BE, Harvey BR (2011) The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. J Bacteriol 193:4317–4325PubMedCrossRefPubMedCentralGoogle Scholar
  34. Qin X, Singh KV, Weinstock GM, Murray BE (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586PubMedCrossRefPubMedCentralGoogle Scholar
  35. Roberts JC, Singh KV, Okhuysen PC, Murray BE (2004) Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates. J Clin Microbiol 42:2317–2320PubMedCrossRefPubMedCentralGoogle Scholar
  36. Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168PubMedCrossRefGoogle Scholar
  37. Shi K, Brown CK, Gu ZY, Kozlowicz BK, Dunny GM, Ohlendorf DH, Earhart CA (2005) Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proc Natl Acad Sci USA 102:18596–18601PubMedCrossRefPubMedCentralGoogle Scholar
  38. Strzelecki J, Hryniewicz W, Sadowy E (2011) Gelatinase-associated phenotypes and genotypes among clinical isolates of Enterococcus faecalis in Poland. Polish J Microbiol 60:287–292Google Scholar
  39. Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE (2009) A fratricidal mechanism is responsible for eDNA release and contributes to biofilm envelopment of Enterococcus faecalis. Mol Microbiol 72:1022–1036PubMedCrossRefPubMedCentralGoogle Scholar
  40. Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, Hancock LE (2010) Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect Immun 78:4936–4943PubMedCrossRefPubMedCentralGoogle Scholar
  41. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  42. Waters CM, Antiporta MH, Murray BE, Dunny GM (2003) Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins. J Bacteriol 185:3613–3623PubMedCrossRefPubMedCentralGoogle Scholar
  43. Wuster A, Babu MM (2008) Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J Bacteriol 190:743–746PubMedCrossRefPubMedCentralGoogle Scholar
  44. Zeng J, Teng F, Murray BE (2005) Gelatinase is important for translocation of Enterococcus faecalis across polarized human enterocyte-like T84 cells. Infect Immun 73:1606–1612PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate SchoolKyushu UniversityFukuokaJapan

Personalised recommendations