Advertisement

Quorum Sensing Systems in Clostridia

  • Charles Darkoh
  • Godfred Ameyaw Asiedu
Chapter

Abstract

The genus Clostridium consists of bacteria that are obligate anaerobes, Gram-positive, rod shaped, sporeformers, and catalase negative. This genus is one of the largest prokaryotic genera in the phylum Firmicutes (Clostridia is also a class in the phylum), containing over 300 species. All clostridial species form endospores with a strict fermentative type of metabolism. These anaerobes have two forms of growth stages in their life cycle: the vegetative stage, where they divide and proliferate during favorable conditions, and the sporulation stage, in which the vegetative cells form spores under unfavorable conditions and remain dormant until suitable conditions return. The spores are non-metabolizing and highly resistant to heat, desiccation, radiation, oxidation, and many other microbial control agents. The majority of clostridial species do not grow under aerobic conditions, and the vegetative cells are killed upon exposure to oxygen. These anaerobes are ancient bacteria that colonize and thrive in nearly all of the natural anaerobic habitats where organic compounds are present such as soils, aquatic sediments, and the intestinal tracts of animals.

Keywords

Clostridium Difficile Infection Toxin Production Botulinum Neurotoxin Clostridial Species Sensor Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aas J, Gessert CE, Bakken JS (2003) Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin Infect Dis 36:580–585PubMedGoogle Scholar
  2. Aboudola S, Kotloff KL, Kyne L, Warny M, Kelly EC, Sougioultzis S, Giannasca PJ, Monath TP, Kelly CP (2003) Clostridium difficile vaccine and serum immunoglobulin G antibody response to toxin A. Infect Immun 71:1608–1610PubMedPubMedCentralGoogle Scholar
  3. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070PubMedGoogle Scholar
  4. Aronsson B, Mollby R, Nord CE (1985) Antimicrobial agents and Clostridium difficile in acute enteric disease: epidemiological data from Sweden, 1980–1982. J Infect Dis 151:476–481PubMedGoogle Scholar
  5. Aspevall O, Lundberg A, Burman LG, Akerlund T, Svenungsson B (2006) Antimicrobial susceptibility pattern of Clostridium difficile and its relation to PCR ribotypes in a Swedish university hospital. Antimicrob Agents Chemother 50:1890–1892PubMedPubMedCentralGoogle Scholar
  6. Balaban N, Novick RP (1995) Translation of RNAIII, the Staphylococcus aureus agr regulatory RNA molecule, can be activated by a 3′-end deletion. FEMS Microbiol Lett 133:155–161PubMedGoogle Scholar
  7. Bartlett JG (2002) Clinical practice. Antibiotic-associated diarrhea. N Engl J Med 346:334–339PubMedGoogle Scholar
  8. Bishara J, Bloch Y, Garty M, Behor J, Samra Z (2006) Antimicrobial resistance of Clostridium difficile isolates in a tertiary medical center, Israel. Diagn Microbiol Infect Dis 54:141–144PubMedGoogle Scholar
  9. Bliss DZ, Johnson S, Clabots CR, Savik K, Gerding DN (1997) Comparison of cycloserine-cefoxitin-fructose agar (CCFA) and taurocholate-CCFA for recovery of Clostridium difficile during surveillance of hospitalized patients. Diagn Microbiol Infect Dis 29:1–4PubMedGoogle Scholar
  10. Borriello SP, Barclay FE (1985) Protection of hamsters against Clostridium difficile ileocaecitis by prior colonisation with non-pathogenic strains. J Med Microbiol 19:339–350PubMedGoogle Scholar
  11. Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L, Henry C, Gohar M, Declerck N, Lereclus D (2008) Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 36:3791–3801PubMedPubMedCentralGoogle Scholar
  12. Bradshaw M, Marshall KM, Heap JT, Tepp WH, Minton NP, Johnson EA (2010) Construction of a nontoxigenic Clostridium botulinum strain for food challenge studies. Appl Environ Microbiol 76:387–393PubMedPubMedCentralGoogle Scholar
  13. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238PubMedGoogle Scholar
  14. Brandt LJ, Aroniadis OC, Mellow M, Kanatzar A, Kelly C, Park T, Stollman N, Rohlke F, Surawicz C (2012) Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol 107:1079–1087PubMedGoogle Scholar
  15. Carter GP, Purdy D, Williams P, Minton NP (2005) Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. J Med Microbiol 54:119–127PubMedGoogle Scholar
  16. Carter AT, Paul CJ, Mason DR, Twine SM, Alston MJ, Logan SM, Austin JW, Peck MW (2009) Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics 10:115PubMedPubMedCentralGoogle Scholar
  17. Carter GP, Awad MM, Hao Y, Thelen T, Bergin IL, Howarth PM, Seemann T, Rood JI, Aronoff DM, Lyras D (2011a) TcsL is an essential virulence factor in Clostridium sordellii ATCC 9714. Infect Immun 79:1025–1032PubMedPubMedCentralGoogle Scholar
  18. Carter GP, Douce GR, Govind R, Howarth PM, Mackin KE, Spencer J, Buckley AM, Antunes A, Kotsanas D, Jenkin GA, Dupuy B, Rood JI, Lyras D (2011b) The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog 7:e1002317PubMedPubMedCentralGoogle Scholar
  19. Carter GP, Rood JI, Lyras D (2012) The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 20:21–29PubMedGoogle Scholar
  20. Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5:913–919PubMedPubMedCentralGoogle Scholar
  21. Cerca N, Jefferson KK, Oliveira R, Pier GB, Azeredo J (2006) Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun 74:4849–4855PubMedPubMedCentralGoogle Scholar
  22. Cerca N, Maira-Litran T, Jefferson KK, Grout M, Goldmann DA, Pier GB (2007) Protection against Escherichia coli infection by antibody to the Staphylococcus aureus poly-N-acetylglucosamine surface polysaccharide. Proc Natl Acad Sci USA 104:7528–7533PubMedPubMedCentralGoogle Scholar
  23. Chen J, Mcclane BA (2012) Role of the Agr-like quorum-sensing system in regulating toxin production by Clostridium perfringens type B strains CN1793 and CN1795. Infect Immun 80:3008–3017PubMedPubMedCentralGoogle Scholar
  24. Chen Y, Mcclane BA, Fisher DJ, Rood JI, Gupta P (2005) Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl Environ Microbiol 71:7542–7547PubMedPubMedCentralGoogle Scholar
  25. Chen J, Rood JI, Mcclane BA (2011) Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system. mBio 2. doi:  10.1128/mBio.00275-11. e00275-11 [pii]. mBio.00275-11 [pii]
  26. Chung WO, Park Y, Lamont RJ, Mcnab R, Barbieri B, Demuth DR (2001) Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol 183:3903–3909PubMedPubMedCentralGoogle Scholar
  27. Collie RE, Kokai-Kun JF, Mcclane BA (1998) Phenotypic characterization of enterotoxigenic Clostridium perfringens isolates from non-foodborne human gastrointestinal diseases. Anaerobe 4:69–79PubMedGoogle Scholar
  28. Conrad A, Suutari MK, Keinanen MM, Cadoret A, Faure P, Mansuy-Huault L, Block JC (2003) Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids 38:1093–1105PubMedGoogle Scholar
  29. Cooksley CM, Davis IJ, Winzer K, Chan WC, Peck MW, Minton NP (2010) Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum. Appl Environ Microbiol 76:4448–4460PubMedPubMedCentralGoogle Scholar
  30. Curry SR, Marsh JW, Muto CA, O’Leary MM, Pasculle AW, Harrison LH (2007) tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol 45:215–221PubMedPubMedCentralGoogle Scholar
  31. Curry SR, Muto CA, Schlackman JL, Pasculle AW, Shutt KA, Marsh JW, Harrison LH (2013) Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis 57(8):1094–1102PubMedGoogle Scholar
  32. Darkoh C (2012) Regulation of toxin synthesis by Clostridium difficile. University of Texas Graduate School of Biomedical Sciences dissertations and theses (Open Access), paper, 250ppGoogle Scholar
  33. Dawson LF, Valiente E, Faulds-Pain A, Donahue EH, Wren BW (2012) Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One 7:e50527PubMedPubMedCentralGoogle Scholar
  34. Delon A, Levasseur LM, Giraudon M, Bouquet S, Couet W (1999) Antagonistic interaction between the convulsant activities of pefloxacin and its main metabolite norfloxacin in rats. Pharm Res 16:1894–1897PubMedGoogle Scholar
  35. Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8:1095–1104PubMedGoogle Scholar
  36. Dillon ST, Rubin EJ, Yakubovich M, Pothoulakis C, Lamont JT, Feig LA, Gilbert RJ (1995) Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B. Infect Immun 63:1421–1426PubMedPubMedCentralGoogle Scholar
  37. Dingle T, Wee S, Mulvey GL, Greco A, Kitova EN, Sun J, Lin S, Klassen JS, Palcic MM, Ng KK, Armstrong GD (2008) Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 18:698–706PubMedGoogle Scholar
  38. Dionne LL, Raymond F, Corbeil J, Longtin J, Gervais P, Longtin Y (2013) Correlation between Clostridium difficile bacterial load, commercial real-time pcr cycle thresholds, and results of diagnostic tests based on enzyme immunoassay and cell-culture cytotoxicity assay. J Clin Microbiol 51:3624–3630PubMedPubMedCentralGoogle Scholar
  39. Doherty N, Holden MT, Qazi SN, Williams P, Winzer K (2006) Functional analysis of luxS in Staphylococcus aureus reveals a role in metabolism but not quorum sensing. J Bacteriol 188:2885–2897PubMedPubMedCentralGoogle Scholar
  40. Dupont HL (2011) The search for effective treatment of Clostridium difficile infection. N Engl J Med 364:473–475PubMedGoogle Scholar
  41. Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534PubMedGoogle Scholar
  42. Durre P (2008) Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci 1125:353–362PubMedGoogle Scholar
  43. Egerer M, Giesemann T, Jank T, Satchell KJ, Aktories K (2007) Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. J Biol Chem 282:25314–25321PubMedGoogle Scholar
  44. Elliott B, Chang BJ, Golledge CL, Riley TV (2007) Clostridium difficile-associated diarrhoea. Intern Med J 37:561–568PubMedGoogle Scholar
  45. Elvers KT, Park SF (2002) Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signalling molecule. Microbiology 148:1475–1481PubMedGoogle Scholar
  46. Ethapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195:545–555PubMedPubMedCentralGoogle Scholar
  47. Fitzpatrick LR (2013) Probiotics for the treatment of Clostridium difficile associated disease. World J Gastrointest Pathophysiol 4:47–52PubMedPubMedCentralGoogle Scholar
  48. Flamez C, Ricard I, Arafah S, Simonet M, Marceau M (2007) Two-component system regulon plasticity in bacteria: a concept emerging from phenotypic analysis of Yersinia pseudotuberculosis response regulator mutants. Adv Exp Med Biol 603:145–155PubMedGoogle Scholar
  49. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedGoogle Scholar
  50. Fong KP, Chung WO, Lamont RJ, Demuth DR (2001) Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect Immun 69:7625–7634PubMedPubMedCentralGoogle Scholar
  51. Gens KD, Elshaboury RH, Holt JS (2013) Fecal microbiota transplantation and emerging treatments for Clostridium difficile infection. J Pharm Pract 26:498–505PubMedGoogle Scholar
  52. Genth H, Dreger SC, Huelsenbeck J, Just I (2008) Clostridium difficile toxins: more than mere inhibitors of Rho proteins. Int J Biochem Cell Biol 40:592–597PubMedGoogle Scholar
  53. Geric B, Rupnik M, Gerding DN, Grabnar M, Johnson S (2004) Distribution of Clostridium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American hospital. J Med Microbiol 53:887–894PubMedGoogle Scholar
  54. Giraud MN, Motta C, Romero JJ, Bommelaer G, Lichtenberger LM (1999) Interaction of indomethacin and naproxen with gastric surface-active phospholipids: a possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). Biochem Pharmacol 57:247–254PubMedGoogle Scholar
  55. Giron JA, Torres AG, Freer E, Kaper JB (2002) The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379PubMedGoogle Scholar
  56. Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7:894–906PubMedGoogle Scholar
  57. Goldstein EJ, Citron DM, Tyrrell KL, Merriam CV (2013) Comparative in-vitro activity of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 Gram-positive and negative aerobic and anaerobic intestinal flora isolates. Antimicrob Agents Chemother 57:4872–4876PubMedPubMedCentralGoogle Scholar
  58. Gray B, Hall P, Gresham H (2013) Targeting agr- and agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. Sensors (Basel) 13:5130–5166Google Scholar
  59. Guerrero DM, Becker JC, Eckstein EC, Kundrapu S, Deshpande A, Sethi AK, Donskey CJ (2013) Asymptomatic carriage of toxigenic Clostridium difficile by hospitalized patients. J Hos Infect 85:155–158Google Scholar
  60. Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, Heuser J, Dodson KW, Caparon MG, Hultgren SJ (2009) Contribution of autolysin and Sortase a during Enterococcus faecalis DNA-dependent biofilm development. Infect Immun 77:3626–3638PubMedPubMedCentralGoogle Scholar
  61. Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104PubMedGoogle Scholar
  62. Havarstein LS, Coomaraswamy G, Morrison DA (1995) An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci USA 92:11140–11144PubMedPubMedCentralGoogle Scholar
  63. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464PubMedGoogle Scholar
  64. Henriques AO, Moran CP Jr (2007) Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61:555–588PubMedGoogle Scholar
  65. Hilbert DW, Piggot PJ (2004) Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68:234–262PubMedPubMedCentralGoogle Scholar
  66. Ho JG, Greco A, Rupnik M, Ng KK (2005) Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc Natl Acad Sci USA 102:18373–18378PubMedPubMedCentralGoogle Scholar
  67. Hofmann F, Busch C, Prepens U, Just I, Aktories K (1997) Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272:11074–11078PubMedGoogle Scholar
  68. Huelsenbeck SC, May M, Schmidt G, Genth H (2009) Inhibition of cytokinesis by Clostridium difficile toxin B and cytotoxic necrotizing factors–reinforcing the critical role of RhoA in cytokinesis. Cell Motil Cytoskeleton 66:967–975PubMedGoogle Scholar
  69. Hundsberger T, Braun V, Weidmann M, Leukel P, Sauerborn M, Von Eichel-Streiber C (1997) Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244:735–742PubMedGoogle Scholar
  70. Jarraud S, Lyon GJ, Figueiredo AM, Lina G, Vandenesch F, Etienne J, Muir TW, Novick RP (2000) Exfoliating-producing strains define a fourth agr specificity group in Staphylococcus aureus. J Bacteriol 182:6517–6522PubMedPubMedCentralGoogle Scholar
  71. Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339PubMedGoogle Scholar
  72. Ji G, Beavis RC, Novick RP (1995) Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA 92:12055–12059PubMedPubMedCentralGoogle Scholar
  73. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524PubMedPubMedCentralGoogle Scholar
  74. Just I, Gerhard R (2004) Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol 152:23–47PubMedGoogle Scholar
  75. Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995a) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503PubMedGoogle Scholar
  76. Just I, Wilm M, Selzer J, Rex G, Von Eichel-Streiber C, Mann M, Aktories K (1995b) The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem 270:13932–13936PubMedGoogle Scholar
  77. Karlsson S, Burman LG, Akerlund T (2008) Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. Microbiology 154:3430–3436PubMedGoogle Scholar
  78. Katona P (2012) Botulinum toxin: therapeutic agent to cosmetic enhancement to lethal biothreat. Anaerobe 18:240–243PubMedGoogle Scholar
  79. Kelly CR, De Leon L, Jasutkar N (2012) Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. J Clin Gastroenterol 46:145–149PubMedGoogle Scholar
  80. Klebensberger J, Birkenmaier A, Geffers R, Kjelleberg S, Philipp B (2009) SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ Microbiol 11:3073–3086PubMedGoogle Scholar
  81. Koenig RL, Ray JL, Maleki SJ, Smeltzer MS, Hurlburt BK (2004) Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J Bacteriol 186:7549–7555PubMedPubMedCentralGoogle Scholar
  82. Kuchma SL, O’Toole GA (2000) Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol 11:429–433PubMedGoogle Scholar
  83. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713PubMedGoogle Scholar
  84. Kyne L, Warny M, Qamar A, Kelly CP (2001) Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357:189–193PubMedGoogle Scholar
  85. Kyne L, Hamel MB, Polavaram R, Kelly CP (2002) Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. Clin Infect Dis 34:346–353PubMedGoogle Scholar
  86. Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad R, Schreiber F, Brandt C, Deakin LJ, Pickard DJ, Duncan SH, Flint HJ, Clark TG, Parkhill J, Dougan G (2012) Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8:e1002995PubMedPubMedCentralGoogle Scholar
  87. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228PubMedGoogle Scholar
  88. Leid JG, Kerr M, Selgado C, Johnson C, Moreno G, Smith A, Shirtliff ME, O’Toole GA, Cope EK (2009) Flagellum-mediated biofilm defense mechanisms of Pseudomonas aeruginosa against host-derived lactoferrin. Infect Immun 77:4559–4566PubMedPubMedCentralGoogle Scholar
  89. Leung DY, Kelly CP, Boguniewicz M, Pothoulakis C, Lamont JT, Flores A (1991) Treatment with intravenously administered gamma globulin of chronic relapsing colitis induced by Clostridium difficile toxin. J Pediatr 118:633–637PubMedGoogle Scholar
  90. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70:267–274Google Scholar
  91. Li J, Chen J, Vidal JE, Mcclane BA (2011) The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun 79:2451–2459PubMedPubMedCentralGoogle Scholar
  92. Lina G, Jarraud S, Ji G, Greenland T, Pedraza A, Etienne J, Novick RP, Vandenesch F (1998) Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol Microbiol 28:655–662PubMedGoogle Scholar
  93. Lofland D, Josephat F, Partin S (2013) Fecal transplant for recurrent Clostridium difficile infection. Clin Lab Sci 26:131–135PubMedGoogle Scholar
  94. Lombardia E, Rovetto AJ, Arabolaza AL, Grau RR (2006) A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis. J Bacteriol 188:4442–4452PubMedPubMedCentralGoogle Scholar
  95. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, Bourgault AM, Nguyen T, Frenette C, Kelly M, Vibien A, Brassard P, Fenn S, Dewar K, Hudson TJ, Horn R, Rene P, Monczak Y, Dascal A (2005) A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449PubMedGoogle Scholar
  96. Lowy I, Molrine DC, Leav BA, Blair BM, Baxter R, Gerding DN, Nichol G, Thomas WD Jr, Leney M, Sloan S, Hay CA, Ambrosino DM (2010) Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 362:197–205PubMedGoogle Scholar
  97. Lyerly DM, Saum KE, Macdonald DK, Wilkins TD (1985) Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 47:349–352PubMedPubMedCentralGoogle Scholar
  98. Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403PubMedGoogle Scholar
  99. Lyristis M, Bryant AE, Sloan J, Awad MM, Nisbet IT, Stevens DL, Rood JI (1994) Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol 12:761–777PubMedGoogle Scholar
  100. Mai-Prochnow A, Lucas-Elio P, Egan S, Thomas T, Webb JS, Sanchez-Amat A, Kjelleberg S (2008) Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. J Bacteriol 190:5493–5501PubMedPubMedCentralGoogle Scholar
  101. Mani N, Dupuy B (2001) Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci USA 98:5844–5849PubMedPubMedCentralGoogle Scholar
  102. Martin MJ, Clare S, Goulding D, Faulds-Pain A, Barquist L, Browne HP, Pettit L, Dougan G, Lawley TD, Wren BW (2013) The agr locus regulates virulence and colonization genes in Clostridium difficile 027. J Bacteriol 195:3672–3681PubMedPubMedCentralGoogle Scholar
  103. Matamouros S, England P, Dupuy B (2007) Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64:1274–1288PubMedGoogle Scholar
  104. Mattila E, Uusitalo-Seppala R, Wuorela M, Lehtola L, Nurmi H, Ristikankare M, Moilanen V, Salminen K, Seppala M, Mattila PS, Anttila VJ, Arkkila P (2012) Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology 142:490–496PubMedGoogle Scholar
  105. Mayville P, Ji G, Beavis R, Yang H, Goger M, Novick RP, Muir TW (1999) Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci USA 96:1218–1223PubMedPubMedCentralGoogle Scholar
  106. Mcdonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, Johnson S, Gerding DN (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353:2433–2441PubMedGoogle Scholar
  107. Mcfarland LV, Surawicz CM, Greenberg RN, Fekety R, Elmer GW, Moyer KA, Melcher SA, Bowen KE, Cox JL, Noorani Z et al (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 271:1913–1918PubMedGoogle Scholar
  108. Mengesha A, Wei JZ, Zhou SF, Wei MQ (2010) Clostridial spores to treat solid tumours – potential for a new therapeutic modality. Curr Gene Ther 10:15–26PubMedGoogle Scholar
  109. Merritt J, Qi F, Goodman SD, Anderson MH, Shi W (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979PubMedPubMedCentralGoogle Scholar
  110. Minton NP (2003) Clostridia in cancer therapy. Nat Rev Microbiol 1:237–242PubMedGoogle Scholar
  111. Minton NP, Mauchline ML, Lemmon MJ, Brehm JK, Fox M, Michael NP, Giaccia A, Brown JM (1995) Chemotherapeutic tumour targeting using clostridial spores. FEMS Microbiol Rev 17:357–364PubMedGoogle Scholar
  112. Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87PubMedGoogle Scholar
  113. Montecucco C, Schiavo G (1994) Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol 13:1–8PubMedGoogle Scholar
  114. Montecucco C, Papini E, Schiavo G (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346:92–98PubMedGoogle Scholar
  115. Montoya M, Detorres O (2013) Antimicrobial selection and its impact on the incidence of clostridium difficile-associated diarrhea. J Pharm Pract 26:483–487PubMedGoogle Scholar
  116. Morfeldt E, Janzon L, Arvidson S, Lofdahl S (1988) Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet MGG 211:435–440Google Scholar
  117. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449PubMedGoogle Scholar
  118. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564PubMedGoogle Scholar
  119. Novick RP, Muir TW (1999) Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria. Curr Opin Microbiol 2:40–45PubMedGoogle Scholar
  120. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975PubMedPubMedCentralGoogle Scholar
  121. Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Molecular Gen Genet MGG 248:446–458Google Scholar
  122. O’Brien JA, Lahue BJ, Caro JJ, Davidson DM (2007) The emerging infectious challenge of Clostridium difficile-associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol 28:1219–1227PubMedGoogle Scholar
  123. O’Connor JR, Lyras D, Farrow KA, Adams V, Powell DR, Hinds J, Cheung JK, Rood JI (2006) Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol 61:1335–1351PubMedGoogle Scholar
  124. O’Toole G, Kaplan HB, Kolter R (2000a) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79PubMedGoogle Scholar
  125. O’Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000b) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182:425–431PubMedPubMedCentralGoogle Scholar
  126. Ogami N, Yoshida J, Ishimaru T, Kikuchi T, Matsubara N, Ueno T, Asano I (2013) Is Clostridium difficile infection influenced by antimicrobial use density in wards? Jpn J Antibiot 66:87–95PubMedGoogle Scholar
  127. Ohtani K, Hayashi H, Shimizu T (2002) The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Mol Microbiol 44:171–179PubMedGoogle Scholar
  128. Ohtani K, Yuan Y, Hassan S, Wang R, Wang Y, Shimizu T (2009) Virulence gene regulation by the agr system in Clostridium perfringens. J Bacteriol 191:3919–3927PubMedPubMedCentralGoogle Scholar
  129. Ohtani K, Hirakawa H, Tashiro K, Yoshizawa S, Kuhara S, Shimizu T (2010) Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe 16:258–264PubMedGoogle Scholar
  130. Okada M, Sato I, Cho SJ, Iwata H, Nishio T, Dubnau D, Sakagami Y (2005) Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat Chem Biol 1:23–24PubMedGoogle Scholar
  131. Pelaez T, Alcala L, Alonso R, Rodriguez-Creixems M, Garcia-Lechuz JM, Bouza E (2002) Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob Agents Chemother 46:1647–1650PubMedPubMedCentralGoogle Scholar
  132. Peterson S, Cline RT, Tettelin H, Sharov V, Morrison DA (2000) Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J Bacteriol 182:6192–6202PubMedPubMedCentralGoogle Scholar
  133. Pfeifer G, Schirmer J, Leemhuis J, Busch C, Meyer DK, Aktories K, Barth H (2003) Cellular uptake of Clostridium difficile toxin B Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J Biol Chem 278:44535–44541PubMedGoogle Scholar
  134. Piacenti FJ, Leuthner KD (2013) Antimicrobial stewardship and Clostridium difficile-associated diarrhea. J Pharm Pract 26:506–513PubMedGoogle Scholar
  135. Pothoulakis C, Lamont JT (2001) Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am J Physiol Gastrointest Liver Physiol 280:G178–G183PubMedGoogle Scholar
  136. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293PubMedGoogle Scholar
  137. Prouty AM, Schwesinger WH, Gunn JS (2002) Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649PubMedPubMedCentralGoogle Scholar
  138. Redelings MD, Sorvillo F, Mascola L (2007) Increase in Clostridium difficile-related mortality rates, United States, 1999–2004. Emerg Infect Dis 13:1417–1419PubMedPubMedCentralGoogle Scholar
  139. Reineke J, Tenzer S, Rupnik M, Koschinski A, Hasselmayer O, Schrattenholz A, Schild H, Von Eichel-Streiber C (2007) Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446:415–419PubMedGoogle Scholar
  140. Rood JI (1998) Virulence genes of Clostridium perfringens. Annu Rev Microbiol 52:333–360PubMedGoogle Scholar
  141. Rupnik M, Poxton IR (2013) Clostridium difficile – special collection. J Med Microbiol 62:1368PubMedGoogle Scholar
  142. Rupnik M, Brazier JS, Duerden BI, Grabnar M, Stubbs SL (2001) Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes. Microbiology 147:439–447PubMedGoogle Scholar
  143. Rupnik M, Pabst S, Von Eichel-Streiber C, Urlaub H, Soling HD (2005) Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology 151:199–208PubMedGoogle Scholar
  144. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2Google Scholar
  145. Sambol SP, Merrigan MM, Tang JK, Johnson S, Gerding DN (2002) Colonization for the prevention of Clostridium difficile disease in hamsters. J Infect Dis 186:1781–1789PubMedGoogle Scholar
  146. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326PubMedPubMedCentralGoogle Scholar
  147. Sebaihia M et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786PubMedGoogle Scholar
  148. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM (2011a) Foodborne illness acquired in the United States–unspecified agents. Emerg Infect Dis 17:16–22PubMedPubMedCentralGoogle Scholar
  149. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011b) Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis 17:7–15PubMedPubMedCentralGoogle Scholar
  150. Schantz EJ, Johnson EA (1992) Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56:80–99PubMedPubMedCentralGoogle Scholar
  151. Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480PubMedGoogle Scholar
  152. Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476PubMedGoogle Scholar
  153. Schechter R, Arnon SS (2000) Extreme potency of botulinum toxin. Lancet 355:237–238PubMedGoogle Scholar
  154. Schleheck D, Barraud N, Klebensberger J, Webb JS, Mcdougald D, Rice SA, Kjelleberg S (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4:e5513PubMedPubMedCentralGoogle Scholar
  155. Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556PubMedGoogle Scholar
  156. Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayashi H (2002) Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 43:257–265PubMedGoogle Scholar
  157. Shubeita HE, Sambrook JF, Mccormick AM (1987) Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Natl Acad Sci USA 84:5645–5649PubMedPubMedCentralGoogle Scholar
  158. Solomon JM, Lazazzera BA, Grossman AD (1996) Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 10:2014–2024PubMedGoogle Scholar
  159. Songer JG (1996) Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9:216–234PubMedPubMedCentralGoogle Scholar
  160. Songer JG (1998) Clostridial diseases of small ruminants. Vet Res 29:219–232PubMedGoogle Scholar
  161. Songer JG (2010) Clostridia as agents of zoonotic disease. Vet Microbiol 140:399–404PubMedGoogle Scholar
  162. Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB (1999) Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci USA 96:15196–15201PubMedPubMedCentralGoogle Scholar
  163. Sperandio V, Torres AG, Giron JA, Kaper JB (2001) Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187–5197PubMedPubMedCentralGoogle Scholar
  164. Stevens DL, Aldape MJ, Bryant AE (2012) Life-threatening clostridial infections. Anaerobe 18:254–259PubMedGoogle Scholar
  165. Sturme MH, Kleerebezem M, Nakayama J, Akkermans AD, Vaugha EE, de Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81:233–243PubMedGoogle Scholar
  166. Thelestam M, Chaves-Olarte E (2000) Cytotoxic effects of the Clostridium difficile toxins. Curr Top Microbiol Immunol 250:85–96PubMedGoogle Scholar
  167. Theys J, Pennington O, Dubois L, Anlezark G, Vaughan T, Mengesha A, Landuyt W, Anne J, Burke PJ, Durre P, Wouters BG, Minton NP, Lambin P (2006) Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br J Cancer 95:1212–1219PubMedPubMedCentralGoogle Scholar
  168. Thoendel M, Horswill AR (2010) Biosynthesis of peptide signals in gram-positive bacteria. Adv Appl Microbiol 71:91–112PubMedGoogle Scholar
  169. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signaling in the staphylococci. Chem Rev 111:117–151PubMedPubMedCentralGoogle Scholar
  170. Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE (2009) A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol 72:1022–1036PubMedPubMedCentralGoogle Scholar
  171. Tielen P, Rosenau F, Wilhelm S, Jaeger KE, Flemming HC, Wingender J (2010) Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology 156:2239–2252PubMedGoogle Scholar
  172. Uzal FA, Mcclane BA (2011) Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections. Vet Microbiol 153:37–43PubMedPubMedCentralGoogle Scholar
  173. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3:383–396PubMedGoogle Scholar
  174. Vidal JE, Chen J, Li J, Mcclane BA (2009) Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory locus in Clostridium perfringens strain 13. PLoS One 4:e6232PubMedPubMedCentralGoogle Scholar
  175. Vidal JE, Ma M, Saputo J, Garcia J, Uzal FA, Mcclane BA (2012) Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Mol Microbiol 83:179–194PubMedPubMedCentralGoogle Scholar
  176. Vilain S, Pretorius JM, Theron J, Brozel VS (2009) DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868PubMedPubMedCentralGoogle Scholar
  177. Villar RG, Elliott SP, Davenport KM (2006) Botulism: the many faces of botulinum toxin and its potential for bioterrorism. Infect Dis Clin North Am 20:313–327, ixPubMedGoogle Scholar
  178. Von Eichel-Streiber C, Boquet P, Sauerborn M, Thelestam M (1996) Large clostridial cytotoxins–a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol 4:375–382Google Scholar
  179. Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263PubMedPubMedCentralGoogle Scholar
  180. Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, Deleo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275PubMedGoogle Scholar
  181. Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323PubMedPubMedCentralGoogle Scholar
  182. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, Mcdonald LC (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084PubMedGoogle Scholar
  183. Weese JS, Staempfli HR, Prescott JF (2000) Isolation of environmental Clostridium difficile from a veterinary teaching hospital. J Vet Diagn Invest 12:449–452PubMedGoogle Scholar
  184. Wilkins TD, Lyerly DM (2003) Clostridium difficile testing: after 20 years, still challenging. J Clin Microbiol 41:531–534PubMedPubMedCentralGoogle Scholar
  185. Wilson KH, Sheagren JN (1983) Antagonism of toxigenic Clostridium difficile by nontoxigenic C. difficile. J Infect Dis 147:733–736PubMedGoogle Scholar
  186. Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MT, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P (2002) LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148:909–922PubMedGoogle Scholar
  187. Winzer K, Hardie KR, Williams P (2003) LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv Appl Microbiol 53:291–396PubMedGoogle Scholar
  188. Xiao J, Koo H (2010) Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms. J Appl Microbiol 108:2103–2113PubMedGoogle Scholar
  189. Yakob L, Riley TV, Paterson DL, Clements AC (2013) Clostridium difficile exposure as an insidious source of infection in healthcare settings: an epidemiological model. BMC Infect Dis 13:376PubMedPubMedCentralGoogle Scholar
  190. Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112:1620–1625PubMedPubMedCentralGoogle Scholar
  191. Yoshida A, Ansai T, Takehara T, Kuramitsu HK (2005) LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol 71:2372–2380PubMedPubMedCentralGoogle Scholar
  192. Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452PubMedPubMedCentralGoogle Scholar
  193. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99:3129–3134PubMedPubMedCentralGoogle Scholar
  194. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463PubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Division of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious DiseasesThe University of Texas School of Public HealthHoustonUSA
  2. 2.Faculty of Law, Humanities and the ArtsUniversity of Wollongong, Australian National Center for Ocean Resources and SecurityWollongongAustralia

Personalised recommendations