Quorum Sensing in Acinetobacter baumannii



Acinetobacter baumannii is an opportunistic nosocomial pathogen that causes severe infections especially in patients with compromised immune systems. Many Gram-negative pathogens regulate the expression of their virulence factors through cell density dependent N-acyl homoserine lactone (AHL)-mediated quorum-sensing (QS) system. A. baumannii has one quorum-sensing system which involves AbaR receptor protein that forms complex with AbaI (autoinducer synthase)-generated N-(3-hydroxydodecanoyl)-L-homoserine lactone (3-OH-C12 HSL) that regulates virulence factors, namely, biofilm formation and surface motility. Survival of A. baumannii against oxidative stress is also facilitated by QS-mediated expression of antioxidant enzymes, catalase and SOD. Phylogenetic analysis showed that A. baumannii may have acquired its QS genes from Halothiobacillus neapolitanus despite being closely related to Burkholderia ambifaria. A. baumannii shares its sites of infections in patients with Pseudomonas aeruginosa, another Gram-negative pathogen exhibiting QS. Both these pathogens show two-way AHL-mediated interspecies interactions. Such interspecies interactions could bear serious implications on severity and treatment of disease. In the present era of increasing multidrug resistance, alternative therapies like inhibition of quorum sensing seem attractive to control infections caused by A. baumannii.


Quorum Sense Acinetobacter Baumannii Homoserine Lactone Acyl Homoserine Lactone Interspecies Interaction 


  1. Actis LA, Tolmasky ME, Crosa LM, Corsa JH (1993) Effect of iron-limiting conditions on growth of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 31:2812–2815PubMedPubMedCentralGoogle Scholar
  2. Adams D, Yee L, Rimmer JA, Williams R, Martin H, Ovington C (2011) Investigation and management of an A. baumannii outbreak in ICU. Br J Nurs 20:140–147PubMedCrossRefGoogle Scholar
  3. Bergogne-Berezin E, Friedman H, Bendinelli M (2008) Acinetobacter biology and pathogenesis. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  4. Bhargava N, Sharma P, Capalash N (2010) Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol 36:349–360. doi: 10.3109/1040841X.2010.512269 PubMedCrossRefGoogle Scholar
  5. Bhargava N, Sharma P, Capalash N (2012) N-acyl homoserine lactone mediated interspecies interactions between A. baumannii and P. aeruginosa. Biofouling 28:813–822. doi: 10.1080/08927014.2012.714372 PubMedCrossRefGoogle Scholar
  6. Bhargava N, Sharma P, Capalash N (2014) Pyocyanin stimulates quorum sensing-mediate tolerance to oxidative stress and increases persister cells population in Acinetobacter baumannii. Infect Immun pii:IAI.01600-14 [Epub ahead of print]Google Scholar
  7. Bonnin RA, Nordmann P, Pottron A, Lecuyer H, Zahar JR, Piorel L (2011) Carbapenem hydrolyzing GES-type extended spectrum β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 55:349–354. doi: 10.1128/AAC.00773-10 PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bonnin RA, Poirel L, Naas T, Pirs M, Seme K, Schrenzel J, Nordmann P (2012) Dissemination of New Delhi metallo-β-lactamase-1-producing Acinetobacter baumannii in Europe. Clin Microbiol Infect 18:E362–E365. doi: 10.1111/j.1469-0691.2012.03928.x PubMedCrossRefGoogle Scholar
  9. Boujaafar N, Freney J, Bouvet PJM, Jeddi M (1990) Cell surface hydrophobicity of 88 clinical strains of Acinetobacter baumannii. Res Microbiol 141:477–482. doi: 10.1016/0923-2508(90)90073-Y PubMedCrossRefGoogle Scholar
  10. Camarena L, Bruno V, Euskirchen G, Poggio S, Synder M (2010) Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 6:e1000834. doi: 10.1371/journal.ppat.1000834 PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chow JY, Yang Y, Tay SB, Chua KL, Yew SW (2014) Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob Agents Chemother 58:1802–1805. doi: 10.1128/AAC.02410-13 PubMedCrossRefPubMedCentralGoogle Scholar
  12. Clemmer KM, Bonomo RA, Rather PN (2011) Analysis of surface motility in Acinetobacter baumannii. Microbiology 157:2534–2544. doi: 10.1099/mic.0.049791-0 PubMedCrossRefPubMedCentralGoogle Scholar
  13. Czajkowski R, Jafra S (2009) Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56:1–16PubMedGoogle Scholar
  14. Czárán T, Hoekstra RF (2009) Microbial communication, cooperation and chatting: quorum sensing drives the evolution of cooperation in bacteria. PLoS One 4(8):e6655. doi: 10.1371/journal.pone.0006655 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Davies JC, Rubin BK (2007) Emerging and unusual Gram-negative infections in cystic fibrosis. Semin Respir Crit Care Med 28:312–321. doi: 10.1055/s-2007-981652 PubMedCrossRefGoogle Scholar
  16. Dekimpe V, Deziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155:712–723. doi: 10.1099/mic.0.022764-0 PubMedCrossRefGoogle Scholar
  17. Dent LL, Marshall DR, Pratap S, Hulette RB (2011) Multidrug resistant Acinetobacter baumannii: a descriptive study in a city hospital. BMC Infect Dis 10:196. doi: 10.1186/1471-2334-10-196 CrossRefGoogle Scholar
  18. Diggle SP, Crusz SA, Camara M (2007) Quorum sensing. Curr Biol 17:R907–R910PubMedCrossRefGoogle Scholar
  19. Ducros VM, Lewis RJ, Verma CS, Dodson EJ, Leonard G, Turkenburg JP, Murshudov GN, Wilkinson AJ, Brannigan JA (2001) Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J Mol Biol 306:759–771. doi: 10.1006/jmbi.2001.4443 PubMedCrossRefGoogle Scholar
  20. Egland KA, Greenberg EP (2001) Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J Bacteriol 183:382–386. doi: 10.1128/JB.183.1.382-386.2001 PubMedCrossRefPubMedCentralGoogle Scholar
  21. Fournier PE, Richet H (2006) The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 42:692–699. doi: 10.1086/500202 PubMedCrossRefGoogle Scholar
  22. Gaynes R, Edwards JR (2005) Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 41:848–854. doi: 10.1086/432803 PubMedCrossRefGoogle Scholar
  23. Gonzalez RH, Dijkshoorn L, Van den Barselaar M, Nudel C (2009) Quorum sensing signal profile of Acinetobacter and environmental sources. Rev Argent Microbiol 41:73–78PubMedGoogle Scholar
  24. Gospodarek E, Bogiel T, Zalas-Wiecek P (2009) Communication between microorganisms as a basis for production of virulence factors. Pol J Microbiol 58:191–198PubMedGoogle Scholar
  25. Gould TA, Schwelaer HP, Churchill MEA (2004) Structure of the Pseudomonas aeruginosa acyl-homoserine lactone synthase LasI. Mol Microbiol 53:1135–1146. doi: 10.1111/j.1365-2958.2004.04211.x PubMedCrossRefGoogle Scholar
  26. Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497PubMedPubMedCentralGoogle Scholar
  27. Jacobs AC, Hood I, Boyd KL, Olson PD, Morrison JM, Carson S, Sayood K, Iwen PC, Skaar EP, Dunman PM (2010) Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun 78:1952–1962. doi: 10.1128/IAI.00889-09 PubMedCrossRefPubMedCentralGoogle Scholar
  28. Mammeri H, Poirel L, Mangeney N, Nordmann P (2003) Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to β-Lactams. Antimicrob Agents Chemother 47:1536–1542. doi: 10.1128/AAC.47.5.1536-1542.2003 PubMedCrossRefPubMedCentralGoogle Scholar
  29. Meyer E, Schwab F, Schroeren-Boersch B, Gastmeier P (2010) Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Crit Care 14:R113PubMedCrossRefPubMedCentralGoogle Scholar
  30. Niu C, Clemmer KM, Bonomo RA, Rather PN (2008) Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol 190:3386–3392. doi: 10.1128/JB.01929-07 PubMedCrossRefPubMedCentralGoogle Scholar
  31. Panilaitis B, Johri A, Blank W, Kaplan D, Fuhrman J (2002) Adjuvant activity of emulsan, a secreted lipopolysaccharide from Acinetobacter calcoaceticus. Clin Diagn Lab Immunol 9:1240–1247. doi: 10.1128/CDLI.9.6.1240-1247.2002 PubMedPubMedCentralGoogle Scholar
  32. Perez F, Hujer AM, Hujer KM, Decker BK, Rather NP, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51:3471–3484. doi: 10.1128/AAC.01464-06 PubMedCrossRefPubMedCentralGoogle Scholar
  33. Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836. doi: 10.1111/j.1469-0691.2006.01456.x PubMedCrossRefGoogle Scholar
  34. Pristovsek P, Sengupta K, Löhr F, Schäfer B, von Trebra MW, Rüterjans H, Bernhard F (2003) Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box. J Biol Chem 278:17752–17759. doi: 10.1074/jbc.M301328200 PubMedCrossRefGoogle Scholar
  35. Rathinavelu S, Zavros Y, Merchant JL (2003) Acinetobacter lwoffii infection and gastritis. Microbes Infect 5:651–657. doi: 10.1016/S1286-4579(03)00099-6 PubMedCrossRefGoogle Scholar
  36. Saroj SD, Rather PN (2013) Streptomycin inhibits quorum sensing in Acinetobacter baumannii. Antimicrob Agents Chemother 57:1926–1929. doi: 10.1128/AAC.02161-12 PubMedCrossRefPubMedCentralGoogle Scholar
  37. Schramm VL, Gutierrez JA, Cordovano G, Basu I, Guha C, Belbin TJ, Evans GB, Tyler PC, Furneaux RH (2008) Transition state analogues in quorum sensing and sam recycling. Nucleic Acids Symp Ser 52:75–76. doi: 10.1093/nass/nrn038 CrossRefGoogle Scholar
  38. Singh H, Thangaraj P, Chakrabarti A (2013) Acinetobacter baumannii: a brief account of mechanisms of multidrug resistance and current and future therapeutic management. J Clin Diagn Res 7:2602–2605. doi: 10.7860/JCDR/2013/6337.3626 PubMedPubMedCentralGoogle Scholar
  39. Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PO, Rasmussen TB, Bjarnsholt T, Nielsen TT, Hoiby N, Givskov M (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3648–3663. doi: 10.1128/AAC.01230-07 PubMedCrossRefPubMedCentralGoogle Scholar
  40. Sperandio V (2007) Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signalling. Expert Rev Anti Infect Ther 5:271–276. doi: 10.1586/14787210.5.2.271 PubMedCrossRefPubMedCentralGoogle Scholar
  41. Stacy DM, Welsh MA, Rather PN, Blackwell HE (2012) Attenuation of quorum sensing in pathogen Acinetobacter baumannii using non native N-acyl homoserine lactones. ACS Chem Biol 7:1719–1728. doi: 10.1021/cb300351x PubMedCrossRefPubMedCentralGoogle Scholar
  42. Stacy DM, Le Quement ST, Hansen CL, Clausen JW, Tolker-Nielsen T, Brummond JW, Givskov M, Nielsen TE, Blackwell HE (2013) Synthesis and biological evaluation of Triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Org Biomol Chem 11:938–954. doi: 10.1039/c2ob27155a PubMedCrossRefPubMedCentralGoogle Scholar
  43. Tay SB, Yew WS (2013) Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int J Mol Sci 14:16570–16599. doi: 10.3390/ijms140816570 PubMedCrossRefPubMedCentralGoogle Scholar
  44. Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393–4401. doi: 10.1093/emboj/cdf459 PubMedCrossRefPubMedCentralGoogle Scholar
  45. Winn WC Jr, Allen SD, Janda WM, Koneman EW, Schreckenberger PC, Procop GW, Woods GL (2005) Koneman’s color atlas and textbook of diagnostic microbiology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  46. Wooldridge KG, Williams PH (1993) Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12:325–348. doi:  10.1111/j.1574-6976.1993.tb00026.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of BiotechnologyPanjab UniversityChandigarhIndia
  2. 2.Department of MicrobiologyPanjab UniversityChandigarhIndia

Personalised recommendations