Advertisement

Semi-inner Product: Application to Frame Theory and Numerical Range of Operators

  • N. K. Sahu
  • C. NahakEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 91)

Abstract

This paper deals with the theory of semi-inner product, its generalizations, and applications to frame theory and numerical range of operators. The notion of frames is introduced in classical and generalized semi-inner product spaces. Numerical range of two operators is also studied in semi-inner product spaces.

References

  1. 1.
    Amelin, C.F.: A numerical range for two linear operators. Pac. J. Math. 48, 335–345 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Berkson, E.: Some types of Banach spaces, Hermitian operators and Bade functionals. Trans. Am. Math. Soc. 116, 376–385 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Casazza, P.G., Christensen, O.: The reconstruction property in Banach spaces and perturbation theorem. Canad. Math. Bull. 51, 348–358 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Christensen, O., Heil, C.: Perturbations of Banach frames and atomic decompositions. Math. Nachr. 158, 33–47 (1997)MathSciNetGoogle Scholar
  5. 5.
    Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    El-Sayyad, S.G., Khaleelulla, S.M.: Semi-inner product algebras of type (p). Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 175–187 (1993)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Giles, J.R.: Classes of semi-inner product spaces. Trans. Am. Math. Soc. 129, 436–446 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Four. Anal. Appl. 10, 105–132 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kaushik, S.K.: A generalization of frames in Banach spaces. J. Contemp. Math. Anal. 44, 212–218 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Koehler, D.O.: A note on some operator theory in certain semi-inner product spaces. Proc. Am. Math. Soc. 30, 363–366 (1971)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Lumer, G.: Semi-inner product spaces. Trans. Am. Math. Soc. 100, 29–43 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Nanda, S.: Numerical range for two non-linear operators in semi-inner product space. J. Nat. Acad. Math. 17, 16–20 (2003)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Nath, B.: On generalization of semi-inner product spaces. Math. J. Okayama Univ. 15, 1–6 (1971)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Pap, E., Pavlovic, R.: Adjoint theorem on semi-inner product spaces of type (p). Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 25, 39–46 (1995)MathSciNetGoogle Scholar
  15. 15.
    Stoeva, D.T.: On \(p\)-frames and reconstruction series in separable Banach spaces. Integr. Transf. Spec. Funct. 17, 127–133 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Verma, R.U.: The numerical range of nonlinear Banach space operators. Acta Math. Hungar. 63, 305–312 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Williams, J.P.: Spectra of products and numerical ranges. J. Math. Anal. Appl. 17, 214–220 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zhang, H., Zhang, J.: Generalized semi-inner products with applications to regularized lerning. J. Math. Anal. Appl. 372, 181–196 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Zhang, H., Zhang, J.: Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products. Appl. Comput. Harmon. Anal. 31, 1–25 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations