Frames and Erasures

  • Saliha PehlivanEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 91)


Frames have been useful in signal transmission due to the built in redundancy. In recent years, the erasure problem in data transmission has been the focus of considerable research in the case the error estimate is measured by operator (or matrix) norm. Sample results include the characterization of one-erasure optimal Parseval frames, the connection between two-erasure optimal Parseval frames and equiangular frames, and some characterization of optimal dual frames. If iterations are allowed in the reconstruction process of the signal vector, then spectral radius measurement for the error operators is more appropriate than the operator norm measurement. A complete characterization of spectrally one-uniform frames (i.e., one-erasure optimal frames with respect to the spectral radius measurement) in terms of the redundancy distribution of the frame is obtained. The characterization relies on the connection between spectrally optimal frames and the linear connectivity property of the frame. The linear connectivity property is equivalent to the intersection dependence property, and is also closely related to the concept of \(k\)-independent set.


  1. 1.
    Bodmann, B., Paulsen, V.I.: Frames, graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bodmann, B.: Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal. 22, 274–285 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bodmann, B., Paulsen, V., Tomforde, M.: Equiangular tight frames from complex Seidel matrices containing cube roots of unity. Linear Algebra Appl. 430, 396–417 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bodmann, B., Singh, P.: Burst erasures and the mean-square error for cyclic Parseval frames. IEEE Trans. Inform. Theor. 57, 4622–4635 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.K.: Constucting finite frames of a given spectrum and set of lengths (submitted). arXiv:1106.0921v1
  6. 6.
    Casazza, P.G., Kovacević, J.: Equal-norm tight frames with erasures. Adv. Compt. Math. 18, 387–430 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Casazza, P.G., Heinecke, A., Krahmer, F., Kutyniok, G.: Optimally sparse frames. IEEE Trans. Inform. Theor. 57, 7279–7287 (2011)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Duncan, D.M., Hoffman, T.R., Solazzo, J.P.: Equiangular tight frames and fourth root Seidel matrices. Linear Algebra Appl. 432, 2816–2823 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Goyal, V.K., Kovacević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hoffman, T., Solazzo, J.: Complex equiangular tight frames and erasures (submitted). arXiv:1107.2173v1
  11. 11.
    Holmes, R., Paulsen, V.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kalra, D.: Complex equiangular cyclic frames and erasures. Linear Algebra Appl. 419, 373–399 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Krahmer, F., Kutyniok, G., Lemvig, J.: Sparsity and spectral properties of dual frames (submitted). arXiv:1204.5062v1
  14. 14.
    Lemvig, J., Miller, C., Okoudjou, K.A.: Prime tight frames (submitted). arXiv:1202.6350v3
  15. 15.
    Leng, J., Han, D.: Optimal dual frames for erasures. Linear Algebra Appl. 435, 1464–1472 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Leng, J., Han, D., Huang, T.: Optimal dual frames for communication coding with probabilistic erasures. IEEE Trans. Signal Process. 59, 5380–5389 (2011)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lopez, J., Han, D.: Optimal dual frames for erasures. Linear Algebra Appl. 432, 471–482 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Massey, P., Ruiz, M., Stojanoff, D.: Optimal completions of a frame (submitted). arXiv:1206.3588v1
  19. 19.
    Massey, P., Ruiz, M., Stojanoff, D.: Optimal dual frames and frame completions for majorization. Appl. Comput. Harmon. Anal. (in press)Google Scholar
  20. 20.
    Pehlivan, S., Han, D., Mohapatra, R.: Linearly connected sequences and spectrally optimal dual frames for erasures. J. Funct. Anal. (to appear) (2013)Google Scholar
  21. 21.
    Strohmer, T., Heath, R.W.: Grassmannian frames with applications to coding and communication. Appl. Comp. Harmonic Anal. 14, 257–275 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations