Advertisement

Epidemiological Models: A Study of Two Retroviruses, HIV and HTLV-I

  • Dana Baxley
  • N. K. Sahu
  • Ram N. Mohapatra
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 91)

Abstract

HIV is an example of a disease where the pathogen mutates so that it is not recognized by the immune system. In this paper, we have studied several models and two retroviruses, viz., HIV and Human T-lymphotropic virus (HTLV-I). We have used SIMULINK to draw graphs and study the associated modeling problems.

Keywords

Infected Cell Reproduction Number Susceptible Cell Tropical Spastic Para Paresis Infected Steady State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baxley, D.: A mathematical study of two retroviruses, HIV and HTLV-I. MS Thesis, University of Central Florida, Orlando Fl (2007)Google Scholar
  2. 2.
    Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building Analysis and Interpretation. Wiley, New York (2002)Google Scholar
  3. 3.
    Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and computation of the basic reproductive ratio in models for infectious diseases in heterogeneous population. J. Math. Biol. 28, 365–382 (1990)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Freedman, A.S., Harris, N.L.: Clinical and pathologic features of adult T cell lymphoma/leukemia. UpToDate. http://www.utdol.com/utd/content/topic.do?topicKey=lymphoma/13762 (2007)
  5. 5.
    Kartikeyan, S., Bharmal, R.N., Tiwari, R.P., Bisen, P.S.: HIV and AIDS: Basic Elements and Priorities. Springer, The Netherlands (2007)Google Scholar
  6. 6.
    Katri, P., Ruan, S.: Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4\(+\) T cells. C. R. Biol. 327(11), 1009–1016 (2004)CrossRefGoogle Scholar
  7. 7.
    Kirschner, D.: Using Mathematics to understand HIV immune dynamics. Not. AMS 43(2), 191–202 (1996)MATHMathSciNetGoogle Scholar
  8. 8.
    Kitayimbwa, J.M., Mugisha, J.Y.T., Saenz, R.A.: The role of backward mutations on the within-host dynamics of HIV-1. J. Math. Biol. 67(5), 1111–1139 (2013)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Manns, A., Hisada, M., Grenade, L.: Human T-lymphotropic virus type I infection. Lancet 353, 1951–1958 (1999)CrossRefGoogle Scholar
  10. 10.
    Mao, Y., Wang, L., Gu, C., Herschhorn, A., Dsormeaux, A., Xiang, S. H., Sodroski, J. G.: Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer. Proc. Natl. Acad. Sci. USA 110(30), 12438–12443 (2013)Google Scholar
  11. 11.
    Pantaleo, G., Graziosi, C., Fauci, A.S.: The immunopathogenesis of human immunodeficiency virus infection. N. Engl. J. Med. 328, 327–335 (1993)CrossRefGoogle Scholar
  12. 12.
    Plemmons, W.R.: A mathematical study of Malaria models of Ross and Ngwa. Masters Thesis, University of Central Florida, Orlando Fl (2006)Google Scholar
  13. 13.
    Poppvic, M., Sarangadhara, M.G., Read, E., Gallo, R.C.: Detection, isolation, and continous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224, 497–500 (1984)CrossRefGoogle Scholar
  14. 14.
    Pratt, R.J.: HIV and AIDS: A Foundation for Nursing and Healthcare Practice. Arnold, London (2003)CrossRefGoogle Scholar
  15. 15.
    Rodin, E.Y., Murthy, D.N.P., Page, N.W.: Mathematical Modeling: A Tool for Problem Solving in Engineering, Physical, Biological and Social Sciences. Pergamon Press, Oxford (1989)Google Scholar
  16. 16.
    Scadden, D.T., Freedman, A.R., Robertson, P.: Human T-lymphotropic virus type I: disease associations, diagnosis, and treatment. UpToDate. http://www.uptodate.com/contents/human-t-lymphotropic-virus-type-i-disease-associations-diagnosis-and-treatment (2007)
  17. 17.
    Scadden, D.T., Freedman, A.R., Robertson, P.: Human T-lymphotropic virus type I: virology, pathogenesis, and epidemiology. UpToDate. http://www.uptodate.com/contents/human-t-lymphotropic-virus-type-i-virology-pathogenesis-and-epidemiology (2007)
  18. 18.
    Singh, N.: Epidemiological models for mutating pathogen with temporary immunity. Doctoral Thesis, University of Central Florida, Orlando Fl (2006)Google Scholar
  19. 19.
    Stilianakis, N.I., Dietz, K., Schenzle, D.: Analysis of a model for the pathogenesis of AIDS. Math. Biosci. 145(1), 27–46 (1997)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Stilianakis, N.I., Seydel, J.: Modeling the T-cell dynamics and pathogenesis of HTLV-I infection. Bull. Math. Biol. 61(5), 935–947 (1999)CrossRefGoogle Scholar
  21. 21.
    Stilianakis, N.I., Schenzle, D.: On the intra-host dynamics of HIV-1 infections. Math. Biosci. 199, 1–25 (2006)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Wang, L., Li, M.Y., Kirschner, D.: Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression. Math. Biosci. 179(2), 207–217 (2002)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Wessner, D.: HIV and AIDS. Pearson Benjamin/Cummings, San Francisco (2006)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Central FloridaOrlandoUSA
  2. 2.Department of MathematicsIIT KharagpurKharagpurIndia

Personalised recommendations