Skip to main content

Region of Variability for Some Subclasses of Univalent Functions

  • Conference paper
  • First Online:
Mathematics and Computing 2013

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 91))

  • 694 Accesses

Abstract

Let \(\fancyscript{A}\) denote the class of analytic functions \(f\) in the unit disk \(\mathbb {D}\) with \(f(0)=0\) and \(f'(0)=1\). Let \(\fancyscript{S}\) denote the class of univalent functions in \(\fancyscript{A}\). Let \(\widetilde{\fancyscript{F}}\) (for example, class of starlike, convex, close-to-convex, spiralike, etc.) be any arbitrary subfamily of \(\fancyscript{S}\) and \(z_0\in \mathbb {D}\) then upper and lower estimates of \(|f(z_0)|\), \(|f'(z_0)|\) and \(\mathrm{Arg} f'(z_0)\) for all \(f\in \widetilde{\fancyscript{F}}\) are respectively called a growth theorem, a distortion theorem and a rotation theorem at \(z_0\) for \(\widetilde{\fancyscript{F}}\). These estimates deal only with absolute values of \(f(z_0)\) and \(f'(z_0)\) or with the argument of \(f'(z_0)\). The aim of this paper is to give a survey on regions of variability of \(f(z_0)\) or \(f'(z_0)\) or \(\log f'(z_0)\) when \(f\) ranges over some well-known subclasses of \(\fancyscript{S}\). As a consequence, we present the sharp Pre-Schwarzian norm and Block semi-norm for some of the subclasses of \(\fancyscript{S}\). We also graphically illustrate the region of variability for several sets of parameters.

The author thank SRIC, IIT Kharagpur (ref. IIT/SRIC/MA/SUA/2012-13/144) for the financial support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharonov, D., Elin, M., Shoikhet, D.: Spiral-like functions with respect to a boundary point. J. Math. Anal. Appl. 280, 17–29 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahuja, O.P., Silverman, H.: A survey on spiral-like and related function classes. Math. Chron. 20, 39–66 (1991)

    MATH  MathSciNet  Google Scholar 

  3. Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions. Ann. Math. 17(1), 12–22 (1915)

    Article  MATH  Google Scholar 

  4. Arango, J.H., Mejia, D., Ruscheweyh, St.: Exponentially convex univalent functions. Complex Var. Elliptic Equ. 33(1), 33–50 (1997)

    Google Scholar 

  5. Bhowmik, B., Ponnusamy, S.: Region of variability for concave univalent functions. Analysis (Munich) 28(3), 333–344 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Chichra, P.N.: Regular functions \(f(z)\) for which \(zf^{\prime } (z)\) is \(\alpha \)-spiral. Proc. Am. Math. Soc. 49, 151–160 (1975)

    MATH  MathSciNet  Google Scholar 

  7. Duren, P.L.: Univalent Functions (Grundlehren der mathematischen Wissenschaften), vol. 259. Springer, New York (1983)

    Google Scholar 

  8. Elin, E., Reich, S., Shoikhet, D.: Holomorphically accretive mappings and spiral-shaped functions of proper contractions. Nonlinear Anal. Forum 5, 149–161 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Elin, M., Reich, S., Shoikhet, D.: Dynamics of inequalities in geometric function theory. J. Inequal. Appl. 6, 651–664 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Elin, M.: Covering and distortion theorems for spirallike functions with respect to a boundary point. Int. J. Pure Appl. Math. 28(3), 387–400 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Goodman, A.W.: Univalent Functions, vols. I–II. Mariner Publishing Co., Tampa (1983)

    Google Scholar 

  12. Hallenbeck, D.J., Livingston, A.E.: Applications of extreme point theory to classes of multivalent functions. Trans. Am. Math. Soc. 221, 339–359 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaplan, W.: Close-to-convex schlicht functions. Mich. Math. J. 1, 169–185 (1952)

    Article  MATH  Google Scholar 

  14. Lecko, A.: On the class of functions starlike with respect to the boundary point. J. Math. Anal. Appl. 261, 649–664 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Libera, R.J., Ziegler, M.R.: Regular functions \(f(z)\) for which \(zf^{\prime } (z)\) is \(\alpha \)-spiral. Trans. Am. Math. Soc. 166, 361–370 (1972)

    MATH  MathSciNet  Google Scholar 

  16. Lyzzaik, A.: On a conjecture of M.S. Robertson. Proc. Am. Math. Soc. 91, 108–110 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Miller, S.S., Mocanu, P.T.: Differential Subordinations. Theory and Applications, 225. Marcel Dekker Inc, New York, Basel (2000)

    Google Scholar 

  18. Nehari, Z.: The Schwarzian derivative and schlicht functions. Bull. Am. Math. Soc. 55, 545–551 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pfaltzgraff, J.A.: Univalence of the integral of \(f^{\prime }(z)^{\lambda }\). Bull. Lond. Math. Soc. 7, 254–256 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ponnusamy, S., Vasudevarao, A.: Region of variability of two subclasses of univalent functions. J. Math. Anal. Appl. 332(2), 1323–1334 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ponnusamy, S., Vasudevarao, A., Yanagihara, H.: Region of variability of univalent functions \( f(z)\) for which \( zf^{\prime }(z)\) is spirallike. Houston J. Math. 34(4), 1037–1048 (2008a)

    Google Scholar 

  22. Ponnusamy, S., Vasudevarao, A., Yanagihara, H.: Region of variability for close-to-convex functions. Complex Var. Elliptic Equ. 53(8), 709–716 (2008b)

    Google Scholar 

  23. Ponnusamy, S., Vasudevarao, A., Vuorinen, M.: Region of variability for spirallike functions with respect to a boundary point. Colloq. Math. 116(1), 31–46 (2009a)

    Google Scholar 

  24. Ponnusamy, S., Vasudevarao, A., Vuorinen, M.: Region of variability for certain classes of univalent functions satisfying differential inequalities. Complex Var. Elliptic Equ. 54(10), 899–922 (2009b)

    Google Scholar 

  25. Ponnusamy, S., Vasudevarao, A., Yanagihara, H.: Region of variability for close-to-convex functions-II. Appl. Math. Comp. 215(3), 901–915 (2009c)

    Google Scholar 

  26. Ponnusamy, S., Vasudevarao, A.: Region of variability for functions with positive real part. Ann. Polon. Math. 99(3), 225–245 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ponnusamy, S., Vasudevarao, A., Vuorinen, M.: Region of variability for exponentially convex functions. Complex Anal. Oper. Theory 5(3), 955–966 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pommerenke, Ch.: Boundary behaviour of conformal maps. Springer, Berlin (1992)

    Google Scholar 

  29. Ponnusamy, S., Rajasekaran, S.: New sufficient conditions for starlike and univalent functions. Soochow J. Math. 21, 193–201 (1995)

    MATH  MathSciNet  Google Scholar 

  30. Ponnusamy, S., Singh, V.: Univalence of certain integral transforms. Glas. Mat. Ser. III 31(2), 253–262 (1996)

    MATH  MathSciNet  Google Scholar 

  31. Ponnusamy, S., Yamamoto, H., Yanagihara, H.: Variability regions for certain families of harmonic univalent mappings. Complex Var. Elliptic Equ. 58(1), 23–34 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Robertson, M.S.: Univalent functions \(f(z)\) for which \(zf^{\prime }(z)\) is spirallike. Mich. Math. J. 16, 97–101 (1969)

    Article  MATH  Google Scholar 

  33. Robertson, M.S.: Univalent functions starlike with respect to a boundary point. J. Math. Anal. Appl. 81, 327–345 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ruscheweyh, St.: A subordination theorem for \(\Phi \)-like functions. J. Lond. Math. Soc. 13, 275–280 (1976)

    Google Scholar 

  35. Silverman, H., Silvia, E.M.: Subclasses of univalent functions starlike with respect to a boundary point. Houston J. Math. 16(2), 289–299 (1990)

    MATH  MathSciNet  Google Scholar 

  36. Singh, V., Chichra, P.N.: Univalent functions \(f(z)\) for which \(zf^{\prime }(z)\) is \(\alpha \)-spirallike. Indian J. Pure Appl. Math. 8, 253–259 (1977)

    MATH  MathSciNet  Google Scholar 

  37. Špaček, L.: Contribution à la théorie des fonctions univalentes (in Czech), Časop Pěst. Mat. Fys. 62, 12–19 (1933)

    Google Scholar 

  38. Yanagihara, H.: Regions of variability for functions of bounded derivatives. Kodai Math. J. 28, 452–462 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yanagihara, H.: Regions of variability for convex function. Math. Nachr. 279, 1723–1730 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yanagihara, H.: Variability regions for families of convex function. Comput. Methods Funct. Theory 10(1), 291–302 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vasudevarao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Vasudevarao, A. (2014). Region of Variability for Some Subclasses of Univalent Functions. In: Mohapatra, R., Giri, D., Saxena, P., Srivastava, P. (eds) Mathematics and Computing 2013. Springer Proceedings in Mathematics & Statistics, vol 91. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1952-1_10

Download citation

Publish with us

Policies and ethics