Intensity Growth with Dose

  • C. M. Sunta
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 202)


This chapter deals essentially with the nonlinear growth of thermoluminescence (TL) intensity with radiation dose. After a brief review of earlier theories and earlier works on this subject, the discussion takes up the so-called heating stage competition model to explain the nonlinear behavior of TL growth with dose. As against the arbitrary competitors assumed by earlier workers, in the proposed model the competitors are thermally disconnected deep traps (TDDT) which when empty act as competitors and when filled cause increase in the number of recombination centers (RC). When the active traps (AT) and TDDTs get filled up during irradiation, the reduction in competition and the increase in filled active trap population takes place simultaneously. As a result, the TL intensity growth becomes superlinear. The treatment of the model takes into account the irradiation and heating stages together. Using this model, expressions are derived for the TL intensity growth curve, supralinearity factor (SF), and predose sensitization factor (PDSF). Also derived is a new expression called the sensitization factor (SnF). The factor S n F which has been introduced by this author is used to give a unified explanation for the mechanisms that give rise to the SF and the PDSF. The computed profiles of SF, PDSF, and S n F are compared with the experimentally obtained profiles of these factors for the case of LiF:Mg, Ti TLD phosphor. Apart from providing a theoretical basis underlying the phenomena of supralinearity and predose sensitization, the model dispels the doubt of some workers that the mechanism involved in these two phenomena may be altogether different from each other.


Linear Energy Transfer Recombination Center Glow Curve Deep Trap Active Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Watanabe, Research Report to FAPESP, Brazil, University of Sao Paulo. (Institute of Physics, Sao Paulo, 1998)Google Scholar
  2. 2.
    N.A. Larsen, L. Botter-Jensen, S.W.S. McKeever, Radiat. Prot. Dosim. 84, 87 (1999)CrossRefGoogle Scholar
  3. 3.
    J.K. Srivastava, in Proceedings of First International Conference on Luminescence and its Applications, Luminescence Society of India Karaikudi TN India, 1992, Published as Luminescence: Phenomena, Materials and Devices ed. by R.P. Rao (Nova Science Publishers Inc., New York, 1992), p. 71Google Scholar
  4. 4.
    C.M. Sunta, Radiat. Effects 79, 149 (1983)CrossRefGoogle Scholar
  5. 5.
    A.R. Lakshmanan, K.G. Vohra, Nucl. Instrum. Methods 159, 585 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    A. Halperin, R. Chen, Phys. Rev. 148, 839 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    E.F. Mische, S.W.S. McKeever, Radiat. Prot. Dosim. 29, 159 (1989)Google Scholar
  8. 8.
    C.M. Sunta, V.N. Bapat, S.P. Kathuria, in Proceedings of the Third International Conference Luminescence Dosimetry (now called SSD), 11–14 October 1971. (Danish AEC Research Establishment Riso, Denmark, 1971), p. 146Google Scholar
  9. 9.
    M. Moscovitch, Y.S. Horowitz, J. Phys. Appl. Phys. 21, 804 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    R. Chen, X.H. Yang, S.W.S. Mckeever, J. Phys. D Appl. Phys. 21, 1452 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    A.R. Lakshmanan, R.C. Bhatt, S.J. Supe, J. Phys. D Appl. Phys. 34, 1683 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    B. Chandra, R.C. Bhatt, S.J. Supe, Nucl. Instrum. Methods 184, 549 (1981)Google Scholar
  13. 13.
    J.K. Srivastava, S. Supe, J. RadiatProt Dosimetry 6(1-4), 45–48 (1983)Google Scholar
  14. 14.
    M.J. Aitken, Physics Reports, Archaeological involvements of Physics, vol 40C, no 5. (North—Holland Publishing Company, Amsterdam, 1978), p. 291 (Fig. 2.4)Google Scholar
  15. 15.
    R. Chen, S.W.S. McKeever, Radiat. Meas. 23(4), 667 (1994)CrossRefGoogle Scholar
  16. 16.
    N. Suntharalingam, J.R. Cameron, Phys. Med. Biol. 14, 397 (1969)CrossRefGoogle Scholar
  17. 17.
    E.W. Claffy, C.C Klick, F.H. Attix, in Proceedings of the Second International Conference Luminescence Dosimetry, Gatlinberg, Tenn.(USAEC CONF-680920) (1968), p. 302Google Scholar
  18. 18.
    Y.S. Horowitz, M. Rosenkrantz, Radiat. Prot. Dosim. 31, 71 (1990)Google Scholar
  19. 19.
    M. Rosenkrantz, Y.S. Horowitz, Radiat. Prot. Dosim. 47, 27 (1993)Google Scholar
  20. 20.
    C.M. Sunta, Phys. Stat. Sol. 53, 127 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    C.M. Sunta, Phys. Stat. Sol. 37, K81 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    R. Chen, G. Fogel, Radiat. Prot. Dosim. 47, 23 (1993)Google Scholar
  23. 23.
    E.T. Rodine, P.L. Land, Phys. Rev. 134, 2701 (1971)CrossRefGoogle Scholar
  24. 24.
    N. Kristianpoller, R. Chen, M. Israeli, J. Phys. D Appl. Phys. 7, 1063 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    C.M. Sunta, E.M. Yoshimura, E. Okuno, J. Phys. D Appl. Phys. 27, 852–860 (1994)Google Scholar
  26. 26.
    C.M. Sunta, E.M. Yoshimura, E. Okuno, J. Phys. D Appl. Phys. 27, 1337–1340 (1994)Google Scholar
  27. 27.
    R. Chen, G. Fogel, C.K. Lee, Radiat. Prot. Dosim. 65, 63–68 (1996)Google Scholar
  28. 28.
    R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997), p. 180CrossRefGoogle Scholar
  29. 29.
    C.K. Lee, R. Chen, J. Phys. D Appl. Phys. 28, 408 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    C.M. Sunta, E.M. Yoshimura, E. Okuno, Radiat. Meas. 23, 655–666 (1994)CrossRefGoogle Scholar
  31. 31.
    C.M. Sunta, E. Okuno, J.F. Lima, E.M. Yoshimura, J. Phys. D Appl. Phys. 27, 2636–2643 (1994)Google Scholar
  32. 32.
    A.R. Lakshmanan, R.C. Bhatt, S.J. Supe, J. Phys. D Appl. Phys. 14, 1683 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    B. Chandra, R.C. Bhatt, S.J. Supe, Nucl. Instrum. Meth. 184, 549 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    A.R. Lakshmanan, R.C. Bhatt, K.G. Vohra, Phys. Stat. Sol. 53, 617 (1979)ADSCrossRefGoogle Scholar
  35. 35.
    Niewiadomaski T., Comfrontation of Thermoluminescence models in Lithium fluoride with experimental data, Institute of Physics Krakow (Poland) Report Dec (1976)Google Scholar
  36. 36.
    C.M. Sunta, E.M. Yoshimura, E. Okuno, Phys. Stat. Sol. 142, 253 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    A.R. Lakshamnan, B. Chandra, R.C. Bhatt, J. Phys. D Appl. Phys. 15, 1501 (1982)ADSCrossRefGoogle Scholar
  38. 38.
    M.R. Mayhugh, R.W. Christy, M.N. Johnson, J. Appl. Phys. 41, 2968 (1970)ADSCrossRefGoogle Scholar
  39. 39.
    G.C. Critenden, P.D. Townsend, S.E. Townsend, J. Phys. D Appl. Phys. 7, 2397 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    L.V.E. Caldas, M.R. Mayhugh, T.G. Stoebe, J. Appl. Phys. 54, 3431 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    J.L. Landreth, S.W.S. McKeever, J. Phys. D Appl. Phys. 18, 1990 (1985)CrossRefGoogle Scholar
  42. 42.
    B. Chandra, A.R. Lakshmanan, R.C. Bhatt, J. Phys. D Appl. Phys. 15, 1803 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Radiation ProtectionFormerly from Bhabha Atomic Research Center and Atomic Energy Regulatory Board, Government of IndiaMumbaiIndia

Personalised recommendations