The Quasi-Equilibrium Problem in Thermoluminescence

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 202)


The chapter begins with defining the quasi-equilibrium (QE) in thermoluminescence (TL). It is shown that it is the values of the system parameters namely the concentration N of the traps and the recombination centers (RC) and their cross-sections σ which solely determine whether or not the QE condition would be satisfied. This dependence may be used to answer the question whether QE is satisfied in the TL of real materials. Greater are the values of these parameters better it is for the QE condition. A function of N and σ is derived which defines the lower limit of these parameters for satisfying the QE condition. Some earlier workers had concluded that the QE may be satisfied only when recombination rate dominates over the retrapping rate during the glow curve recording. In this chapter this condition is shown to be unimportant. The importance of the recombination lifetime τ rec is highlighted. Smaller is the value of τ rec better it is for the QE to be achieved. It is found that the condition τ rec/T R  < 10−3 sets the upper limit of τ rec in any glow peak, where T R is the time span of the glow peak being measured. It is found that QE depends also on the heating rate β. When β is increased above a certain limit, the glow peak may begin to widen. At this point the glow peak enters from QE into non-QE domain. It is suggested that this property may be used to test whether a glow peak is being recorded under the QE condition. The limiting value of β above which this effect may be seen depends on the parameters of system under investigation. As an illustration, this test is applied to the glow peak No. 5 of LiF-TLD phosphor.


Recombination Center Glow Curve High Heating Rate Active Trap Excitation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.T. Randall, M.H.F. Wilkins, Proc. Roy. Soc. (London) series A184, 365 (1945)Google Scholar
  2. 2.
    G.F.J. Garlick, A.F. Gibson, Proc. Phys. Soc. (London) 62, 574 (1948)ADSCrossRefGoogle Scholar
  3. 3.
    C.E. May, J.A. partridge, J. Chem. Phys. 40, 1401 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    R. Visocekas, La Luminescence de la calcite après irradiation cathodique, TL et luminescence par effettunel, Ph.D. Thesis UniversitePiere et Marie Curie, Paris (1978)Google Scholar
  5. 5.
    D. Shenker, R. Chen, J. Comput. Phys. 10, 272 (1972)ADSCrossRefMATHGoogle Scholar
  6. 6.
    P. Kelly, M.J. Laubitz, P. Braunlich, Phys. Rev. B4, 1960 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    A.C. Lewandowski, S.W.S. Mckeever, Phys. Rev. B43, 8163 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, J.F.D. Chubaci, S. Watanabe, J. Phys. D Appl. Phys. 32, 717–725 (1999)Google Scholar
  9. 9.
    C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, J. Phys. D Appl. Phys. 34, 3285–3295 (2001)Google Scholar
  10. 10.
    S.W.S. McKeever, B.G. Markey, A.C. Lewandowki, Nucl. Tracks Radiat. Meas. 21, 57 (1993)CrossRefGoogle Scholar
  11. 11.
    R. Chen, V. Pagonis, J. Lumiescence 143, 734–740 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, Radiat. Meas. 35, 595 (2002)CrossRefGoogle Scholar
  13. 13.
    E. Sonder, W.A. Sibley, in Point defects In solids, ed. by J.F. Crawford, L.M. Slifkin (Plenum, New York, 1972), p. 201Google Scholar
  14. 14.
    A. Rose, Concepts in Photoconductivity and Allied Problems (Interscience, New York, 1963), p. 118Google Scholar
  15. 15.
    M. Lax, Phys. Rev. 119, 1520 (1960)ADSCrossRefGoogle Scholar
  16. 16.
    N. Kristianpoller, Y. Kirsh, S. Shoval, D. Weiss, R. Chen, Nucl. Traks Radiat. Meas. 14, 101 (1988)CrossRefGoogle Scholar
  17. 17.
    T. Sakurai, J. Appl. Phys. 82, 5722 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    V.K. Mathur, A.C. Lewandowski, N.A. Guardala, J.L. price, Radiat. Meas. 30, 735 (1999)CrossRefGoogle Scholar
  19. 19.
    P.F. Smet, K. Eekhout, A.J.J. Bos, E. Van der Kolk, P. dorenbos, J. Lumin. 132, 682 (2012)CrossRefGoogle Scholar
  20. 20.
    C. Furetta, M.T. Laudadio, C. Sanipoli, A. Scacco, J.M. Gomez-Ros, V. Correcher, J. Phys. Chem. Solids 60, 957 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    L.V.E. Caldas, M.R. Mayhugh, T.G. Stoebe, J. Appl. Phys. 54, 3431 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    J.L. Landreth, S.W.S. Mckeever, J. Phys. D Appl. Phys. 18, 1919 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    M. Kumar, G. Chaurasiya, R.K. Kher, B.C. Bhatt, C.M. Sunta, Ind J. Pure Appl. 47, 402 (2009)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Radiation ProtectionFormerly from Bhabha Atomic Research Center and Atomic Energy Regulatory Board, Government of IndiaMumbaiIndia

Personalised recommendations