Kinetics Analysis of TL Glow Curves

  • C. M. Sunta
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 202)


This chapter deals with the kinetics analysis of TL glow peaks. Five methods of glow peak analysis are summarized. The purpose of glow curve analysis essentially is to find the activation energy E and the kinetic order b of the given glow peak. It is shown that the glow peaks shift to higher temperatures and get widened as b increases and trap occupancy (dose) decreases. However at b = 1 the glow peaks stay at the same temperature and retain their fixed shape irrespective of the trap occupancy. This property is exclusive to the first-order (FO) kinetics. It is therefore suggested that the first step in glow peak analysis should be to test whether the given peak shifts with trap occupancy (dose). If it retains the fixed temperature T m with dose change it should be assigned FO. Application of peak shape method in analyzing the experimental glow curves may face uncertainty in the shape due to the presence of weak satellites close to the main peak under study. Simulations show that a linear relation exists between E and T m for a given s/β, where s is the frequency factor and β is the heating rate. This trend is observed also in experimental samples. This implies that the value of the frequency factor s for the different glow peaks of a given sample may be same. It is found that due to the lacunae of general order (GO) kinetics model the found value of E by the glow curve fitting method is subject to error if the best fitted value of b is found to be different from 1 and 2.


Glow Curve Initial Rise Glow Peak Peak Shape Method Heating Rate Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Chen, J. ElectrochemSoc. Solid State Sci. 116, 1254 (1969)Google Scholar
  2. 2.
    N. Takeuchi, K. Inabe, H. Nanto, Solid State Commun. 17, 1267–1269 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    F. Urbach, Wien. Ber. II a 139, 363 (1930)Google Scholar
  4. 4.
    G.F.J. Garlick, A.F. Gibson, Proc. Phys. Soc. London 60, 574 (1948)ADSCrossRefGoogle Scholar
  5. 5.
    N. S. Rawat, M. S. Kulkarni, D. R. Mishra, B. C. Bhatt, C. M. Sunta, S. K. Gupta, D. N. Sharma, Nucl. Instrum. Methods Phys. Res. B 267, 3475(2009)Google Scholar
  6. 6.
    C.M. Sunta, Radiat. Prot. Dosimetry. 8, 25 (1984)Google Scholar
  7. 7.
    H. Gobrecht, D. Hoffman, J. Phys. Chem. Solids 27, 509 (1966)ADSCrossRefGoogle Scholar
  8. 8.
    J. Nahun, A. Halperin, J. Phys. Chem. Solids 24, 823 (1963)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Kirsh, S. Shoval, P.D. Townsend, Phys. Stat. Sol. A 101, 253 (1987)Google Scholar
  10. 10.
    J.K. Srivastava, S.J. Supe, J. Phys. D: Apppl. Phys. 16, 1813 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    P. Braunlich, J. Appl. Phys. 38, 2516 (1967)ADSCrossRefGoogle Scholar
  12. 12.
    C.M. Sunta, W.E.F. Ayta, T.M. Piters, S. Watanabe, Radiat. Meas. 30, 197 (1999)CrossRefGoogle Scholar
  13. 13.
    C.M Sunta, V.N. Bapat, in Specialist Seminar on Thermoluminescence Dating OXFORD (1980) PACT vol 6 (1982), p. 252Google Scholar
  14. 14.
    W. Hoogenstraaten, Philips Res. Rep. 13, 515 (1958)Google Scholar
  15. 15.
    T.S.C. Singh, P.S. Mazumdar, R.K. Gartia, J. Phys. D Appl. Phys. 23, 562 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    R. Chen, S.A.A. Winer, J. Appl. Phys. 41, 5227 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    J.T. Randall, M.H.F. Wilkins, Proc. R. Soc. London Ser A, 185, 365 (1945)Google Scholar
  18. 18.
    C.E. May, J.A. Partidge, J. Chem. Phys. 40, 1401 (1964)ADSCrossRefGoogle Scholar
  19. 19.
    R. Chen, S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (Singapore, World Scientific, 1997), pp. 110–121Google Scholar
  20. 20.
    A. Halperin, A.A. Braner, Phys. Rev. 117, 408 (1960)ADSCrossRefGoogle Scholar
  21. 21.
    S.J. Singh, R.K. Gartia, P.S. Mazumdar, J. Phys. D Appl. Phys. 22, 467 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    D. Shenker, R. Chen, J. Comput. Phys. 10, 272 (1972)Google Scholar
  23. 23.
    D.W. Zimmermann, Archaeometry 12, 29 (1970) (quoted by M.J. Aitken Physics Reports, Archaeol. Involvements Phys. 40C(5), 285 (1978)Google Scholar
  24. 24.
    C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, Radiat. Meas. 35, 47 (2002)CrossRefGoogle Scholar
  25. 25.
    D. Yossian, Y.S. Horowitz, J. Phys. D Appl. Phys. 28, 1495 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    D. Yossian, Y.S. Horowitz, Radiat. Meas. 27, 465 (1997)CrossRefGoogle Scholar
  27. 27.
    C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, T.M. Piters, R. Chen, S. Watanabe, Radiat. Prot. Dosim. 71, 93 (1997)CrossRefGoogle Scholar
  28. 28.
    C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, J. Phys. D Appl. Phys. 38, 95 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Weizman, Y.S. Horowitz, L. Oster, J. Phys. D Appl. Phys. 32, 2118 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    P. Kelly, M.J. Laubitz, P. Braunlich, Phy. Rev. B4, 1960 (1971)ADSCrossRefGoogle Scholar
  31. 31.
    A.C. Lewandowki, S.W.S. McKeever, Phys. Rev. B 43, 8163 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    C. M. Sunta, W. E. F. Ayta, T. M. Piters, R. N. Kulkarni, S. Watanabe, J. Phys. D Appl. Phys. 32, 1271–1275 (1999)Google Scholar
  33. 33.
    C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, T.M. Piters, S. Watanabe, J. Phys. D Appl. Phys. 30, 1234–1242 (1997)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Radiation ProtectionFormerly from Bhabha Atomic Research Center and Atomic Energy Regulatory Board, Government of IndiaMumbaiIndia

Personalised recommendations