Advertisement

Thermal Stimulation of Luminescence and Theory of the Glow Curves

  • C. M. Sunta
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 202)

Abstract

The chapter begins with the explanation of the thermal stimulation process and goes on to describe conventional models of thermoluminescence (TL). The characteristic properties of the glow curves of the Randall-Wilkins, the Garlick-Gibson, the general order (GO), and the mixed order (MO) kinetics models are summarized. While dealing with the GO kinetics model it is shown that the pre-exponential factor (PF) s′ and the kinetic order (KO) parameter b are not independent constants as assumed by the proponents of the model, but that the s′ value is dependent on the value of b and the total concentration N of the traps. The lacunae in GO kinetics model and the shortcomings of MO model are discussed. The chapter then takes up the physical models. These include the multitrap systems which are the simplified version of the generalized scheme consisting of a host of traps and equally large number of recombination centers (RC). These may plausibly be applicable to the real materials. It is shown by simulations how first order (FO) kinetics glow peaks are produced under a variety of parametric conditions. The results of these simulations are used to answer the question why the KO of the TL glow peaks of real materials is invariably seen to be of FO. It is suggested that thermally disconnected deep traps, which may be stable at high temperatures may contribute to the high concentration of RC (radiative or nonradiative) leading to the FO kinetics. It is logical that defects would exist in a crystalline material until it approaches its melting point. Examples are given of some materials in which deep traps have been detected. Another way by which FO kinetics is produced is the local recombination of the thermally excited charge carriers.

Keywords

General Order First Order Kinetic Recombination Center Glow Curve Active Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)Google Scholar
  2. 2.
    R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960), p. 50Google Scholar
  3. 3.
    A.C. Lewandowski, S.W.S. McKeever, Phys. Rev. B43, 8163 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    J.T. Randall, M.H.F. Wilkins, Proc. Roy. Soc. (London) series A184, 365 (1945)Google Scholar
  5. 5.
    M. Kumar, G. Chourasiya, R.K. Kher, B.C. Bhatt, C.M. Sunta, Indian J. Pure Appl. Phys. 47, 402 (2009)Google Scholar
  6. 6.
    G.F.J. Garlick, A.F. Gibson, Proc. Phys. Soc. (London) 62, 574 (1948)ADSCrossRefGoogle Scholar
  7. 7.
    R. Chen, J. Electrochem. Soc. (Solid State Sci.) 116, 1254–1257 (1969)Google Scholar
  8. 8.
    C.E. May, J.A. Partridge, J. Chem. Phys. 40, 1401 (1964)ADSCrossRefGoogle Scholar
  9. 9.
    C.M. Sunta, B.C. Bhatt, P.S. Page, in Proceedings of the Third International Conference on Luminescence and its Applications, Luminescence Society India, pp. 30–35, McMillan India Ltd. (2008)Google Scholar
  10. 10.
    M. Rasheedy, J. Phys, Condens. Matter 5, 633 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, R. Chen, S. Watanabe, Radiat. Prot. Dosim. 71(2), 93–97 (1997)Google Scholar
  12. 12.
    Y. Kirsh, Phys. Status Solidi (a) 129, 15 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997), p. 34Google Scholar
  14. 14.
    N. Takeuchi, K. Inabe, H. Nanto, Solid State Commun. 17, 1267–1269 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    A. Halperin, A.A. Braner, Phys. Rev. 117(2), 408 (1960)ADSCrossRefGoogle Scholar
  16. 16.
    G.A. Dussel, R.H. Bube, Phys. Rev. 155, 764 (1967)ADSCrossRefGoogle Scholar
  17. 17.
    I.J. Saunders, J. Phys. C Solid State Phys. 2, 218 (1969)Google Scholar
  18. 18.
    C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, T.M. Piters, S. Watanabe, J. Phys. D Appl. Phys. 30, 1234 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, T.M. Piters, S. Watanabe, J. Phys. D Appl. Phys. 30, 1234–1242 (1997)Google Scholar
  20. 20.
    S.V. Moharil, S.P. Kathuria, J. Phys. D Appl. Phys. 16, 425 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    A. Opanowicz, Phys. Status Solidi (a) 116, 343 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, J. Phys. D Appl. Phys. 38, 95–102 (2005)Google Scholar
  23. 23.
    C.M. Sunta, R.N. Kulkarni, T.M. Piters, W.E.F. Ayta, S. Watanabe, J. Phys. D Appl. Phys. 31, 2074–2081 (1998)Google Scholar
  24. 24.
    R. Visocekas, La Luminescence de la calcite après irradiation cathodique. TL et luminescence par effettunel, Ph.D. Thesis, UniversitePiere et Marie Curie, Paris, 1978Google Scholar
  25. 25.
    R. Chen, N. Kristianpoller, Z. Davidson, R. Visocekas, J. Lum. 23(3, 4), 293 (1981)Google Scholar
  26. 26.
    D. Shenkar, R. Chen, J. Comput. Phys. 10, 272 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    D. Yossian, Y.S. Horowitz, Radiat. Measur. 27, 465 (1979)CrossRefGoogle Scholar
  28. 28.
    R. Chen, V. Pagonis, Nucl. Instrum. Meas. Phys. Res. B 312, 60–69 (2013)Google Scholar
  29. 29.
    C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, J. Phys. D Appl. Phys. 34, 3285 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    C.M. Sunta, Phys. Status Solidi (a) 53, 127 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    C.M. Sunta, Radiat. Prot. Dosim. 8(1/2), 25–44 (1984)Google Scholar
  32. 32.
    C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, J. Phys. D Appl. Phys. 34, 2690–2698 (2001)Google Scholar
  33. 33.
    C.M. Sunta, M. Kumar, R.K. Kher, B.C. Bhatt, J. Phys. D Appl. Phys. 39, 4557–4562 (2006)Google Scholar
  34. 34.
    B. Yang, P.D. Townsend, A.P. Rowlands, Phys. Rev. B57, 178 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    P.D. Townsend, A.P. Rowlands, Radiat. Prot. Dosimi. 84, 7 (1999)CrossRefGoogle Scholar
  36. 36.
    D. Brind, P. Jaconi, M. Bemabdsselam, D. Lapraz, P.W. May, C.A. Rege, Diamond Rela. Mater. 9, 1245 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    E.G. Yukihara, S.W.S. McKeever, E. Okuno, E.M. Yoshimura, Radiat. Prot. Dosim. 100, 361 (2002)CrossRefGoogle Scholar
  38. 38.
    C.M. Sunta, Phys. Status Solidi 37, K81 (1970)ADSCrossRefGoogle Scholar
  39. 39.
    A. Mandowski, J. Phys. D Appl. Phys. 38, 17 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    M. Kumar, R.K. Kher, C.M. Sunta, J. Phys. D Appl. Phys. 39, 2670 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    C.M. Sunta, E.M. Yoshimura, E. Okuno, J. Phys. D Appl. Phys. 27, 852 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    P. Kelly, M.J. Laubitz, P. Braunlich, Phys. Rev. B4, 1960 (1971)ADSCrossRefGoogle Scholar
  43. 43.
    S.W.S. Mckeever, A.C. Lewandowski, B.G. Markey, Radiat. Prot. Dosim. 47, 9 (1993)Google Scholar
  44. 44.
    A.C. Lewandowki, B.G. Markey, S.W.S. Mckeever, Phys. Rev. B49, 8029 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, J. Phys. D Appl. Phys. 34, 3285 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    R. Chen, V. Pagonis, Thermally and Optically Stimulated Luminescence: A Simulation Approach, 1st edn. (Wiley, Chichester, 2011)Google Scholar
  47. 47.
    R. Chen, J. Mater, Sci. 11, 1521 (1976)Google Scholar
  48. 48.
    R.K. Bull, J. Phys. D Appl. Phys. 22, 1375 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    S. Watanabe, Research Report to FAPESP, University of Sao Paulo Brazil (Institute of Physics, Sao Paulo, 2004)Google Scholar
  50. 50.
    J. Azorin, A. Gutierrez, Nucl. Tracks 11, 167 (1986)CrossRefGoogle Scholar
  51. 51.
    Y. Kirsh, P.D. Towsend, S. Shoval, Nucl. Tracks Radiat. Meas. 13, 1509 (1987)CrossRefGoogle Scholar
  52. 52.
    D. Dorendra Singh, S. Ingatomi, J. Phys. D Appl. Phys. 28, 1509 (1995)Google Scholar
  53. 53.
    S.H. Tatumi, L.R. Batista, S. Watanabe, M. Matsuoka, Nucl. Instrum. Methods Phys. Res. A 280, 510 (1989)ADSCrossRefGoogle Scholar
  54. 54.
    J. Prokein, G.A. Wagner, Radiat. Meas. 23, 85 (1994)CrossRefGoogle Scholar
  55. 55.
    Y. Kirsh, J.E. Townsend, P.D. Townsend, Phys. Status Solidi A 114, 739 (1989)ADSCrossRefGoogle Scholar
  56. 56.
    M.A. EL-Kolaly, S.M.D. Rao, K.S.V. Nambi, A.K. Ganguly, Pramana 14, 165 (1980)Google Scholar
  57. 57.
    M.S. Akselrod, E.A. Gorelova, Nucl. Tracks Radiat. Meas. 21(1), 143 (1993)CrossRefGoogle Scholar
  58. 58.
    C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, J.F.D. Chubaci, S. Watanabe, J. Phys. D Appl. Phys. 32, 717 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Radiation ProtectionFormerly from Bhabha Atomic Research Center and Atomic Energy Regulatory Board, Government of IndiaMumbaiIndia

Personalised recommendations