Advertisement

Electrochemical Biosensors for Hypoxia Markers

  • C. Karunakaran
  • T. Madasamy
  • M. Pandiaraj
  • Niroj K. Sethy
  • Kalpana Bhargava
Chapter

Abstract

An inadequate oxygen supply to cells/tissues causes hypoxia at high altitude, resulting in alteration in the levels of nitric oxide (NO) and its metabolites, viz. nitrite (NO2 ) and nitrate (NO3 ) and simultaneous increase in the formation of peroxynitrite which triggers the cell death by releasing cytochrome c (cyt c) from mitochondria. Therefore, measurements of these biologically important hypoxia biomarkers are imperative in human physiology as it provides valuable information regarding the personnel at high altitude. So, we have developed a cost-effective and portable electrochemical biosensor assay for the measurement of various hypoxia biomarkers in volume miniaturized samples using screen-printed electrodes (SPE). Modification of SPE surface with nanocomposites of polypyrrole and carbon nanotube/self-assembled layer on gold nanoparticle for biofunctionalization of specific biorecognization (enzymes/antibody) elements provides a selective and sensitive determination of various hypoxia biomarkers. Copper, zinc superoxide dismutase, and nitrate reductase-functionalized electrodes were used as biosensors for the determination of NO, NO2 , and NO3 . Supplementation of NO3 rich beetroot juice to human and several animal models enhanced the NO-like bioactivity. So, we have measured the total NO2 and NO3 levels in beetroot supplements and in human plasma before and after beetroot intake. Further, novel cyt c biosensor based on cyt c reductase was employed to measure cyt c release from the hypoxic-induced cell death and the results agreed well with the standard assay methods.

Keywords

Nitric Oxide Nitric Oxide Synthases Electrochemical Response Electrochemical Biosensor Flavin Adenine Dinucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Thanks are due to the support provided by the DIPAS-DRDO, DBT, New Delhi, and the Managing Board of Virudhunagar Hindu Nadar’s Senthikumara Nadar College (Autonomous), Virudhunagar, Tamil Nadu, India.

References

  1. 1.
    Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797:1171–1177PubMedCrossRefGoogle Scholar
  2. 2.
    Lee K, Roth RA, Lapres JJ (2007) Hypoxia, drug therapy and toxicity. Pharmacol Ther 113:229–246CrossRefGoogle Scholar
  3. 3.
    Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z (2007) High altitude and oxidative stress. Respir Physiol Neurobiol 158:128–131PubMedCrossRefGoogle Scholar
  4. 4.
    Fearon IM, Faux SP (2009) Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 47:372–381PubMedCrossRefGoogle Scholar
  5. 5.
    Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152PubMedCrossRefGoogle Scholar
  6. 6.
    Hemmingsson T, Horn A, Linnarsson D (2009) Measuring exhaled nitric oxide at high altitude. Respir Physiol Neurobiol 167:292–298PubMedCrossRefGoogle Scholar
  7. 7.
    Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167PubMedCrossRefGoogle Scholar
  8. 8.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Raat NJH, Noguchi AC, Liu VB, Raghavachari N, Liu D, Xu X, Shiva S, Munson PJ, Gladwin MT (2009) Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response. Free Radic Biol Med 47:510–517PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Nataliya B, Andrei N (2005) A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide 13:93–97CrossRefGoogle Scholar
  11. 11.
    Guevara I et al (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274:177–188PubMedCrossRefGoogle Scholar
  12. 12.
    Masserini RT, Fanning KA (2000) A sensor package for the simultaneous determination of nanomolar concentrations of nitrite, nitrate and ammonia in seawater by fluorescence detection. Mar Chem 68:323–333CrossRefGoogle Scholar
  13. 13.
    Bates JN (1992) Nitric oxide measurement by chemiluminescence detection. Neuroprotoc 1:141–149CrossRefGoogle Scholar
  14. 14.
    Tsikas D, Bohmer A, Mitschke A (2010) Gas chromatography–mass spectrometry analysis of nitrite in biological fluids without derivatization. Anal Chem 15:384–5390Google Scholar
  15. 15.
    Tsikas D, Suchy MT, Mitschke A, Beckmann B, Gutzki FM (2012) Measurement of nitrite in urine by gas chromatography – mass spectrometry. Methods Mol Biol 844:277–293PubMedCrossRefGoogle Scholar
  16. 16.
    Jedlickova V, Paluch Z, Alusik S (2002) Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma. J Chromatogr B 780:193–197CrossRefGoogle Scholar
  17. 17.
    Jobgen WS, Jobgen SC, Li H, Meininger CJ, Wu G (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82CrossRefGoogle Scholar
  18. 18.
    Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B (2000) Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. J Biol Chem 275:33585–33592PubMedCrossRefGoogle Scholar
  19. 19.
    Waterhouse NJ, Trapani JA (2003) A new quantitative assay for cytochrome c release in apoptotic cells. Cell Death Differ 10:853–855PubMedCrossRefGoogle Scholar
  20. 20.
    Crouser ED, Gadd ME, Julian MW, Huff JE, Broekemeier KM, Robbins KA, Pfeiffer DR (2003) Quantification of cytochrome c release from rat liver mitochondria. Anal Biochem 317:67–75PubMedCrossRefGoogle Scholar
  21. 21.
    Nakashima T, Sano M (2011) Single-walled carbon nanotube as 1D array of reacting sites: reaction kinetics of reduction of cytochrome c in tris buffer. J Phys Chem C 115:20931–20936CrossRefGoogle Scholar
  22. 22.
    Webb AJ et al (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51:784–790PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B (2007) Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf) 191:59–66CrossRefGoogle Scholar
  24. 24.
    Joshipura KJ et al (2001) The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med 134:1106–1114PubMedCrossRefGoogle Scholar
  25. 25.
    Crowe FL et al (2011) Fruit and vegetable intake and mortality from ischaemic heart disease:results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heart study. Eur Heart J 32:1235–1243PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Madasamy T, Pandiaraj M, Santosh K, Balamurugan M, Robson B, Arunvenkatesh K, Vairamani K, Kotamraju S, Karunakaran C (2012) Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix. Talanta 100:168–174PubMedCrossRefGoogle Scholar
  27. 27.
    Rajesh S, Koteswararao A, Kalpana B, Ilavazhagan G, Kotamraju S, Karunakaran C (2010) Simultaneous electrochemical determination of superoxide anion radical and nitrite using Cu, ZnSOD immobilized on carbon nanotubes in polypyrrole matrix. Biosens Bioelectron 26:689–695PubMedCrossRefGoogle Scholar
  28. 28.
    Madasamy T, Pandiaraj M, Balamurugan M, Kalpana B, Sethy NK, Karunakaran C (2014) Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens Bioelectron 52:209–215PubMedCrossRefGoogle Scholar
  29. 29.
    Robinson JK, Bollinger MJ, Birks JW (1999) Luminol/H2O2 chemiluminescence detector for the analysis of nitric oxide in exhaled breath. Anal Chem 71:5131–5136PubMedCrossRefGoogle Scholar
  30. 30.
    Karunakaran C, Zhang H, Crow JP, Antholine WE, Kalyanaraman B (2004) Direct probing of copper active site and free radical formed during bicarbonate-dependent peroxidase activity of bovine and human copper, zinc-superoxide dismutases. J Biol Chem 279:32534–32540PubMedCrossRefGoogle Scholar
  31. 31.
    Kirstein D, Kirstein L, Scheller F, Borcherding H, Ronner J, Dieckmann S, Steinrucke P (1999) Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase. J Electroanal Chem 474:43–51CrossRefGoogle Scholar
  32. 32.
    Cosnier S, Innocent C, Jouannea Y (1994) Amperometric detection of nitrate via nitrate reductase immobilized and electrically wired at the electrode surface. Anal Chem 66:3198–3201CrossRefGoogle Scholar
  33. 33.
    Gamboa JCM, Pena RC, Paixao TRLC, Bertotti M (2009) A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 80:581–585PubMedCrossRefGoogle Scholar
  34. 34.
    Groot MTD, Koper MTM (2004) The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum. J Electroanal Chem 562:81–94CrossRefGoogle Scholar
  35. 35.
    Quan D, Shim JH, Kim JD, Park HS, Cha GS, Nam H (2005) Electrochemical determination of nitrate with nitrate reductase immobilized electrodes under ambient air. Anal Chem 77:4467–4473PubMedCrossRefGoogle Scholar
  36. 36.
    Madasamy T, Pandiaraj M, Koteswararao AK, Rajesh S, Kalpana B, Sethy NK, Kotamraju S, Karunakaran C (2013) Gold nanoparticles with self-assembled cysteine monolayer coupled to nitrate reductase in polypyrrole matrix enhanced nitrate biosensor. Adv Chem Lett 1:2–9CrossRefGoogle Scholar
  37. 37.
    Van Faassen EE et al (2009) Nitrite as a regulator of hypoxic signaling in mammalian physiology. Med Res Rev 29:683–741PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Dezfulian C, Raat N, Shiva S, Gladwin MT (2007) Role of the anion nitrite in ischemia – reperfusion cytoprotection and therapeutics. Cardiovasc Res 75:327–338PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ow YP, Green DR, Hao Z, Mak TW (2008) Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9:532–542PubMedCrossRefGoogle Scholar
  40. 40.
    Huttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 11:369–381PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Radhakrishnan J, Wang S, Ayoub IM, Kolarova JD, Levine RF, Gazmuri RJ (2007) Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival. Am J Physiol Heart Circ Physiol 292:767–775CrossRefGoogle Scholar
  42. 42.
    Zhou F, Wu S, Wu B, Chen WR, Xing D (2011) Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small 7:2727–2735PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao J, Zhu X, Li T, Li G (2008) Self-assembled multilayer of gold nanoparticles for amplified electrochemical detection of cytochrome c. Analyst 133:1242–1245PubMedCrossRefGoogle Scholar
  44. 44.
    Liu Y, Wei W (2008) Detection of cytochrome c at biocompatible nanostructured Au-lipid bilayer-modified electrode. Anal Sci 24:1431–1436PubMedCrossRefGoogle Scholar
  45. 45.
    Li J, Cheng G, Dong S (1996) Direct electron transfer to cytochrome c oxidase in self assembled monolayers on gold electrodes. J Electroanal Chem 416:97–104CrossRefGoogle Scholar
  46. 46.
    Ashe D, Alleyne T, Iwuoha E (2007) Serum cytochrome c detection using a cytochrome c oxidase biosensor. Biotechnol Appl Biochem 46:185–189PubMedCrossRefGoogle Scholar
  47. 47.
    Pasdois P, Parker JE, Griffiths EJ, Halestrap AP (2011) The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 436:493–505PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Brown GC, Borutaite V (2008) Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta 1777:877–881PubMedCrossRefGoogle Scholar
  49. 49.
    Hrabakova J, Ataka K, Heberle J, Hildebrandt P, Murgida DH (2006) Long distance electron transfer in cytochrome c oxidase immobilized on electrodes. A surface enhanced resonance Raman spectroscopic study. Phys Chem Chem Phys 8:759–766PubMedCrossRefGoogle Scholar
  50. 50.
    Pandiaraj M, Madasamy T, Paradesi Naidu G, Balamurugan M, Kotamraju S, Rao VK, Kalpana B, Karunakaran C (2013) Nanomaterial based biosensors for cytochrome c using cytochrome c reductase. Bioelectrochemistry 91:1–7PubMedCrossRefGoogle Scholar
  51. 51.
    Mulkidjanian A (2005) Ubiquinol oxidation in the cytochrome bc1 complex: reaction mechanism and prevention of short- circuiting. Biochim Biophys Acta 1709:5–34PubMedCrossRefGoogle Scholar
  52. 52.
    Puig MC, Berbel XM, Rouillon R, Blanchard CC, Marty J (2009) Development of a cytochrome c based screen-printed biosensor for the determination of the antioxidant capacity of orange juices. Bioelectrochemistry 76:76–80CrossRefGoogle Scholar
  53. 53.
    Luipertz R, Watjen W, Kahl R, Chovolou Y (2010) Dose- and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology 271:115–121CrossRefGoogle Scholar
  54. 54.
    Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorov EA (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234:119–124PubMedCrossRefGoogle Scholar
  55. 55.
    Pandiaraj M, Niroj Sethy K, Kalpana B, Rao VK, Karunakaran C (2014) Designing label-free electrochemical immunosensors for cytochrome c using nanocomposites functionalized screen printed electrodes. Biosens Bioelectron 54:115–121PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • C. Karunakaran
    • 1
  • T. Madasamy
    • 1
  • M. Pandiaraj
    • 1
  • Niroj K. Sethy
    • 2
  • Kalpana Bhargava
    • 2
  1. 1.Biomedical Research Lab, Department of ChemistryVHNSN College (Autonomous)VirudhunagarIndia
  2. 2.Peptide and Proteomics DivisionDIPAS, DRDONew DelhiIndia

Personalised recommendations