HIF-1 and EGLN1 Under Hypobaric Hypoxia: Regulation of Master Regulator Paradigm

  • Aastha Mishra
  • M. A. Qadar Pasha


High-altitude (HA) populations living for several thousands of years at elevations up to 5,000 m present many adaptive phenotypic changes; conversely, the lowland populations respond differentially like acclimatizing to the environment or predisposing to HA disorders. Hypobaric hypoxia environment at HA results into reduced blood arterial O2 saturation in the body. It stimulates an array of physiological responses enabling the body to function optimally under this environment. Several of the physiological responses are regulated by hypoxia inducible factor-1 (HIF-1), a master transcription factor of O2-sensing pathway. It regulates transcription of those genes that are required for either increasing O2 availability or mediating responses to O2 deprivation such as reduction of ATP turnover rate of the body. Under normoxic state, however, HIF-I is repressed by HIF-prolyl hydroxylase 2 (EGLN1), which in actuality hydroxylates HIF1α to facilitate its degradation. Furthermore, the adaptive phenotypes are the result of natural selection of genetic traits that counteract the effects of environmentally induced changes. Identification of variants in these genes may help in elucidating molecular mechanisms by which these two molecules function under hypobaric hypoxia. These elucidated mechanisms can be translated for practical applications to enhance the health management at HA. It may also help in designing new therapeutic targets, thereby transforming the basic knowledge into practical applications.


Carotid Body Hypobaric Hypoxia Acute Mountain Sickness Aryl Hydrocarbon Receptor Nuclear Translocator Chronic Mountain Sickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work presented here was supported by CSIR under the projects SIP0006, MLP1401, and EXP0016. We acknowledge the support and encouragement of the director, CSIR-IGIB, during the preparation of this manuscript.

Author Contributions

Aastha Mishra researched and wrote the manuscript. Qadar Pasha conceptualized, researched, wrote, and edited the manuscript.

Conflicts of Interest

We declare that we have no conflicts of interest.


  1. 1.
    West JB (2002) Highest permanent human habitation. High Alt Med Biol 3:401–407PubMedCrossRefGoogle Scholar
  2. 2.
    Hultgren HN, Marticorena EA (1978) High altitude pulmonary edema. Epidemiologic observations in Peru. Chest 74:372–376PubMedCrossRefGoogle Scholar
  3. 3.
    Hsia CC (1998) Respiratory function of hemoglobin. N Engl J Med 338:239–248PubMedCrossRefGoogle Scholar
  4. 4.
    Qadar Pasha MA, Kocherlakota KS, Khan AP, Norboo T, Grover SK, Baig MA, Selvamurthy W, Bramhachari SK (2003) Arterial oxygen saturation under hypoxic environment of high-altitude associates with routine physical activities of natives. Curr Sci 85:502–506Google Scholar
  5. 5.
    Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106CrossRefGoogle Scholar
  6. 6.
    Smith TG, Robbins PA, Ratcliffe PJ (2008) The human side of hypoxia-inducible factor. Br J Haematol 141:325–334PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480PubMedCrossRefGoogle Scholar
  8. 8.
    Maxwell PH (2005) Hypoxia-inducible factor as a physiological regulator. Exp Physiol 90:791–797PubMedCrossRefGoogle Scholar
  9. 9.
    Bruick RK (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev 17:2614–2623PubMedCrossRefGoogle Scholar
  10. 10.
    Berra E, Benizri E, GinouveÁs A, Volmat V, Roux D, PouysseÂgur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1a in normoxia. EMBO J 22:4082–4090PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    To KKW, Huang LE (2005) Suppression of HIF-1α transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem 280:38102–38107PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Saunders PU, Pyne DB, Gore CJ (2009) Endurance training at altitude. High Alt Med Biol 10:135–148PubMedCrossRefGoogle Scholar
  13. 13.
    Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, LópezHerráez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD (2010) Identifying signatures of natural selection in tibetan and andean populations using dense genome scan data. PLoS Genet 6:1001116CrossRefGoogle Scholar
  14. 14.
    Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT (2010) Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107:11459–11464PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329:72–75PubMedCrossRefGoogle Scholar
  17. 17.
    Pagani L, Ayub Q, MacArthur DG, Xue Y, Baillie JK, Chen Y, Kozarewa I, Turner DJ, Tofanelli S, Bulayeva K, Kidd K, Paoli G, Tyler-Smith C (2012) High altitude adaptation in Daghestani populations from the Caucasus. Hum Genet 131:423–433PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP (2012) Genetic adaptation of the hypoxia inducible factor pathway to oxygen pressure among Eurasian human populations. Mol Biol Evol 29:3359–3370PubMedCrossRefGoogle Scholar
  19. 19.
    Aggarwal S, Negi S, Jha P, Singh PK, Stobdan T, Qadar Pasha MA, Ghosh S, Agrawal A, Indian Genome Variation Consortium, Prasher B, Mukerji M (2010) EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proc Natl Acad Sci U S A 107:18961–18966PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Scheinfeldt LB, Soi S, Thompson S, Ranciaro A, Woldemeskel D, Beggs W, Lambert C, Jarvis JP, Abate D, Belay G, Tishkoff SA (2012) Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol 13:R1PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Moore LG (2001) Human genetic adaptation to high altitude. High Alt Med Biol 2:257–279PubMedCrossRefGoogle Scholar
  22. 22.
    Beall CM (2006) Andean, Tibetan and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol 46:18–24PubMedCrossRefGoogle Scholar
  23. 23.
    Beall CM, Laskowski D, Strohl KP, Soria R, Villena M, Vargas E, Alarcon AM, Gonzales C, Erzurum SC (2001) Pulmonary nitric oxide in mountain dwellers. Nature 414:411–412PubMedCrossRefGoogle Scholar
  24. 24.
    Ahsan A, Charu R, Qadar Pasha MA, Norboo T, Afrin F, Baig MA (2004) eNOS allelic variants at the same locus associate with HAPE and adaptation. Thorax 59:1000–1002PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ali Z, Mishra A, Kumar R, Alam P, Pandey P, Ram R, Thinlas T, Mohammad G, Qadar Pasha MA (2012) Interactions among vascular-tone modulators contribute to high altitude pulmonary edema and augmented vasoreactivity in highlanders. Plos One 7:e44049PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Mishra A, Mohammad G, Thinlas T, Qadar Pasha MA (2013) EGLN1 variants influence its expression and SaO2 levels to associate with high-altitude pulmonary edema and adaptation. Clin Sci 124:479–489PubMedGoogle Scholar
  27. 27.
    Gleadle JM, Ratcliffe PJ (1998) Hypoxia and the regulation of gene expression. Mol Med Today 4:122–129PubMedCrossRefGoogle Scholar
  28. 28.
    Baker PT (1969) Human adaptation to high altitude. Science 163:1149–1156PubMedCrossRefGoogle Scholar
  29. 29.
    Stobdan T, Karar J, Qadar Pasha MA (2008) High altitude adaptation: genetic perspectives. High Alt Med Biol 9:140–147PubMedCrossRefGoogle Scholar
  30. 30.
    Qadar Pasha MA, Newman JH (2010) High-altitude disorders: pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest 137:13S–19SCrossRefGoogle Scholar
  31. 31.
    Barry PW, Pollard AJ (2003) Altitude illness. BMJ 326:915–919PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Clarke C (2006) Acute mountain sickness: medical problems associated with acute and subacute exposure to hypobaric hypoxia. Postgrad Med J 82:748–753PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Anand IS, Wu T (2004) Syndromes of subacute mountain sickness. High Alt Med Biol 5:156–170PubMedCrossRefGoogle Scholar
  34. 34.
    Bartsch P, Mairbaurl H, Maggiorini M, Swenson ER (2005) Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 98:1101–1110PubMedCrossRefGoogle Scholar
  35. 35.
    Wilson MH, Newman S, Imray CH (2009) The cerebral effects of ascent to high altitudes. Lancet Neurol 8:175–191PubMedCrossRefGoogle Scholar
  36. 36.
    Maggiorini M, Léon-Velarde F (2003) High-altitude pulmonary hypertension: a pathophysiological entity to different diseases. Eur Respir J 22:1019–1025PubMedCrossRefGoogle Scholar
  37. 37.
    Monge C (1943) Chronic mountain sickness. Physiol Rev 23:166–184Google Scholar
  38. 38.
    Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92(3):967–1003PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jelkmann W (2003) Erythropoietin. J Endocrinol Invest 26:832–837PubMedCrossRefGoogle Scholar
  40. 40.
    Li HG, Ren YM, Guo SC, Cheng L, Wang DP, Yang J, Chang ZJ, Zhao XQ (2009) The protein level of hypoxia-inducible factor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J Exp Zool A Ecol Genet Physiol 311:134–141PubMedCrossRefGoogle Scholar
  41. 41.
    Lundby C, Pilegaard H, Andersen JL, van Hall G, Sander M, Calbet JA (2004) Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. J Exp Biol 207:3865–3871PubMedCrossRefGoogle Scholar
  42. 42.
    Appenzeller O, Minko T, Pozharov V, Bonfichi M, Malcovati L, Gamboa J, Bernardi L (2003) Gene expression in the Andes; relevance to neurology at sea level. J Neurol Sci 207:37–41PubMedCrossRefGoogle Scholar
  43. 43.
    Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91:173–182PubMedGoogle Scholar
  44. 44.
    León-Velarde F, Richalet JP (2006) Respiratory control in residents at high altitude: physiology and pathophysiology. High Alt Med Biol 7:125–137PubMedCrossRefGoogle Scholar
  45. 45.
    Prabhakar NR (2000) Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol 88:2287–2295PubMedGoogle Scholar
  46. 46.
    Lahiri S, Rozanov C, Cherniack NS (2000) Altered structure and function of the carotid body at high altitude and associated chemoreflexes. High Alt Med Biol 1:63–74PubMedCrossRefGoogle Scholar
  47. 47.
    Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2(1):141–219PubMedPubMedCentralGoogle Scholar
  48. 48.
    Moore LG, Harrison GL, McCullough RE, McCullough RG, Micco AJ, Tucker A, Weil JV, Reeves JT (1986) Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness. J Appl Physiol 60:1407–1412PubMedGoogle Scholar
  49. 49.
    Penaloza D, Stella JA (2007) The heart and pulmonary circulation at high altitudes healthy highlanders and chronic mountain sickness. Circulation 115:1132–1146PubMedCrossRefGoogle Scholar
  50. 50.
    Naeije R, Brimioulle S (2001) Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 5:67–71PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Liu K, Sun X, Wang S, Hu B (2007) Association between polymorphisms of HIF-1alpha C1772T and G1790A and hypoxic acclimation in high altitude in Tibetans. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 24:654–658PubMedGoogle Scholar
  52. 52.
    Suzuki K, Kizaki T, Hitomi Y, Nukita M, Kimoto K, Miyazawa N, Kobayashi K, Ohnuki Y, Ohno H (2003) Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas. Med Hypotheses 61:385–389PubMedCrossRefGoogle Scholar
  53. 53.
    Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465PubMedCrossRefGoogle Scholar
  54. 54.
    Xiang K, Ouzhuluobu, Peng Y, Yang Z, Zhang X, Cui C, Zhang H, Li M, Zhang Y, Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu T, Chen H, Shi H, Qi X, Su B (2013) Identification of a tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Mol Biol Evol 30:1889–1898PubMedCrossRefGoogle Scholar
  55. 55.
    Leonard MO, Howell K, Madden SF, Costello CM, Higgins DG, Taylor CT, McLoughlin P (2008) Hypoxia selectively activates the CREB family of transcription factors in the in vivo lung. Am J Respir Crit Care Med 178:977–983PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kim KS, Lee MK, Carroll J, Joh TH (1993) Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J Biol Chem 268:15689–15695PubMedGoogle Scholar
  57. 57.
    Tsuchiya H, Iseda T, Hino O (1996) Identification of a novel protein (VBP-1) binding to the von Hippel-Lindau (VHL) tumor suppressor gene product. Cancer Res 56:2881–2885PubMedGoogle Scholar
  58. 58.
    Lin CH, Chung MY, Chen WB, Chien CH (2007) Growth inhibitory effect of the human NIT2 gene and its allelic imbalance in cancers. FEBS J 274:2946–2956PubMedCrossRefGoogle Scholar
  59. 59.
    Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie 85:747–752PubMedCrossRefGoogle Scholar
  60. 60.
    Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8:523–534PubMedCrossRefGoogle Scholar
  61. 61.
    Ferreira R, Ohneda K, Yamamoto M, Philipsen S (2005) GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 25:1215–1227PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Cardinaux JR, Allaman I, Magistretti PJ (2000) Pro-inflammatory cytokines induce the transcription factors C/EBPbeta and C/EBPdelta in astrocytes. Glia 29:91–97PubMedCrossRefGoogle Scholar
  63. 63.
    Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerød A, Kåresen R, Oh DS, Dressler LG, Lønning PE, Strausberg RL, Chanock S, Børresen-Dale AL, Perou CM (2004) Mutation of GATA3 in human breast tumors. Oncogene 23:7669–7678PubMedCrossRefGoogle Scholar
  64. 64.
    El Rouby S, Newcomb EW (1996) Identification of Bcd, a novel proto-oncogene expressed in B-cells. Oncogene 13:2623–2630PubMedGoogle Scholar
  65. 65.
    Cook WJ, Chase D, Audino DC, Denis CL (1994) Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol Cell Biol 14:629–640PubMedPubMedCentralGoogle Scholar
  66. 66.
    Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469PubMedCrossRefGoogle Scholar
  67. 67.
    Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253:1001–1007PubMedCrossRefGoogle Scholar
  68. 68.
    Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450PubMedCrossRefGoogle Scholar
  69. 69.
    Tsuzuki S, Sekiguchi S, Hayakawa Y (2005) Regulation of growth-blocking peptide expression during embryogenesis of the cabbage armyworm. Biochem Biophys Res Commun 335:1078–1084PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Functional Genomics UnitCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations