Skip to main content

HIF-1 and EGLN1 Under Hypobaric Hypoxia: Regulation of Master Regulator Paradigm

  • Chapter
  • First Online:
Translational Research in Environmental and Occupational Stress

Abstract

High-altitude (HA) populations living for several thousands of years at elevations up to 5,000 m present many adaptive phenotypic changes; conversely, the lowland populations respond differentially like acclimatizing to the environment or predisposing to HA disorders. Hypobaric hypoxia environment at HA results into reduced blood arterial O2 saturation in the body. It stimulates an array of physiological responses enabling the body to function optimally under this environment. Several of the physiological responses are regulated by hypoxia inducible factor-1 (HIF-1), a master transcription factor of O2-sensing pathway. It regulates transcription of those genes that are required for either increasing O2 availability or mediating responses to O2 deprivation such as reduction of ATP turnover rate of the body. Under normoxic state, however, HIF-I is repressed by HIF-prolyl hydroxylase 2 (EGLN1), which in actuality hydroxylates HIF1α to facilitate its degradation. Furthermore, the adaptive phenotypes are the result of natural selection of genetic traits that counteract the effects of environmentally induced changes. Identification of variants in these genes may help in elucidating molecular mechanisms by which these two molecules function under hypobaric hypoxia. These elucidated mechanisms can be translated for practical applications to enhance the health management at HA. It may also help in designing new therapeutic targets, thereby transforming the basic knowledge into practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. West JB (2002) Highest permanent human habitation. High Alt Med Biol 3:401–407

    Article  PubMed  Google Scholar 

  2. Hultgren HN, Marticorena EA (1978) High altitude pulmonary edema. Epidemiologic observations in Peru. Chest 74:372–376

    Article  PubMed  CAS  Google Scholar 

  3. Hsia CC (1998) Respiratory function of hemoglobin. N Engl J Med 338:239–248

    Article  PubMed  CAS  Google Scholar 

  4. Qadar Pasha MA, Kocherlakota KS, Khan AP, Norboo T, Grover SK, Baig MA, Selvamurthy W, Bramhachari SK (2003) Arterial oxygen saturation under hypoxic environment of high-altitude associates with routine physical activities of natives. Curr Sci 85:502–506

    Google Scholar 

  5. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106

    Article  CAS  Google Scholar 

  6. Smith TG, Robbins PA, Ratcliffe PJ (2008) The human side of hypoxia-inducible factor. Br J Haematol 141:325–334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480

    Article  PubMed  CAS  Google Scholar 

  8. Maxwell PH (2005) Hypoxia-inducible factor as a physiological regulator. Exp Physiol 90:791–797

    Article  PubMed  CAS  Google Scholar 

  9. Bruick RK (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev 17:2614–2623

    Article  PubMed  CAS  Google Scholar 

  10. Berra E, Benizri E, GinouveÁs A, Volmat V, Roux D, PouysseÂgur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1a in normoxia. EMBO J 22:4082–4090

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. To KKW, Huang LE (2005) Suppression of HIF-1α transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem 280:38102–38107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Saunders PU, Pyne DB, Gore CJ (2009) Endurance training at altitude. High Alt Med Biol 10:135–148

    Article  PubMed  Google Scholar 

  13. Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, LópezHerráez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD (2010) Identifying signatures of natural selection in tibetan and andean populations using dense genome scan data. PLoS Genet 6:1001116

    Article  Google Scholar 

  14. Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT (2010) Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107:11459–11464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329:72–75

    Article  PubMed  CAS  Google Scholar 

  17. Pagani L, Ayub Q, MacArthur DG, Xue Y, Baillie JK, Chen Y, Kozarewa I, Turner DJ, Tofanelli S, Bulayeva K, Kidd K, Paoli G, Tyler-Smith C (2012) High altitude adaptation in Daghestani populations from the Caucasus. Hum Genet 131:423–433

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP (2012) Genetic adaptation of the hypoxia inducible factor pathway to oxygen pressure among Eurasian human populations. Mol Biol Evol 29:3359–3370

    Article  PubMed  CAS  Google Scholar 

  19. Aggarwal S, Negi S, Jha P, Singh PK, Stobdan T, Qadar Pasha MA, Ghosh S, Agrawal A, Indian Genome Variation Consortium, Prasher B, Mukerji M (2010) EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proc Natl Acad Sci U S A 107:18961–18966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Scheinfeldt LB, Soi S, Thompson S, Ranciaro A, Woldemeskel D, Beggs W, Lambert C, Jarvis JP, Abate D, Belay G, Tishkoff SA (2012) Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol 13:R1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Moore LG (2001) Human genetic adaptation to high altitude. High Alt Med Biol 2:257–279

    Article  PubMed  CAS  Google Scholar 

  22. Beall CM (2006) Andean, Tibetan and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol 46:18–24

    Article  PubMed  Google Scholar 

  23. Beall CM, Laskowski D, Strohl KP, Soria R, Villena M, Vargas E, Alarcon AM, Gonzales C, Erzurum SC (2001) Pulmonary nitric oxide in mountain dwellers. Nature 414:411–412

    Article  PubMed  CAS  Google Scholar 

  24. Ahsan A, Charu R, Qadar Pasha MA, Norboo T, Afrin F, Baig MA (2004) eNOS allelic variants at the same locus associate with HAPE and adaptation. Thorax 59:1000–1002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Ali Z, Mishra A, Kumar R, Alam P, Pandey P, Ram R, Thinlas T, Mohammad G, Qadar Pasha MA (2012) Interactions among vascular-tone modulators contribute to high altitude pulmonary edema and augmented vasoreactivity in highlanders. Plos One 7:e44049

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Mishra A, Mohammad G, Thinlas T, Qadar Pasha MA (2013) EGLN1 variants influence its expression and SaO2 levels to associate with high-altitude pulmonary edema and adaptation. Clin Sci 124:479–489

    PubMed  CAS  Google Scholar 

  27. Gleadle JM, Ratcliffe PJ (1998) Hypoxia and the regulation of gene expression. Mol Med Today 4:122–129

    Article  PubMed  CAS  Google Scholar 

  28. Baker PT (1969) Human adaptation to high altitude. Science 163:1149–1156

    Article  PubMed  CAS  Google Scholar 

  29. Stobdan T, Karar J, Qadar Pasha MA (2008) High altitude adaptation: genetic perspectives. High Alt Med Biol 9:140–147

    Article  PubMed  CAS  Google Scholar 

  30. Qadar Pasha MA, Newman JH (2010) High-altitude disorders: pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest 137:13S–19S

    Article  Google Scholar 

  31. Barry PW, Pollard AJ (2003) Altitude illness. BMJ 326:915–919

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Clarke C (2006) Acute mountain sickness: medical problems associated with acute and subacute exposure to hypobaric hypoxia. Postgrad Med J 82:748–753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Anand IS, Wu T (2004) Syndromes of subacute mountain sickness. High Alt Med Biol 5:156–170

    Article  PubMed  Google Scholar 

  34. Bartsch P, Mairbaurl H, Maggiorini M, Swenson ER (2005) Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 98:1101–1110

    Article  PubMed  Google Scholar 

  35. Wilson MH, Newman S, Imray CH (2009) The cerebral effects of ascent to high altitudes. Lancet Neurol 8:175–191

    Article  PubMed  CAS  Google Scholar 

  36. Maggiorini M, Léon-Velarde F (2003) High-altitude pulmonary hypertension: a pathophysiological entity to different diseases. Eur Respir J 22:1019–1025

    Article  PubMed  CAS  Google Scholar 

  37. Monge C (1943) Chronic mountain sickness. Physiol Rev 23:166–184

    CAS  Google Scholar 

  38. Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92(3):967–1003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Jelkmann W (2003) Erythropoietin. J Endocrinol Invest 26:832–837

    Article  PubMed  CAS  Google Scholar 

  40. Li HG, Ren YM, Guo SC, Cheng L, Wang DP, Yang J, Chang ZJ, Zhao XQ (2009) The protein level of hypoxia-inducible factor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J Exp Zool A Ecol Genet Physiol 311:134–141

    Article  PubMed  Google Scholar 

  41. Lundby C, Pilegaard H, Andersen JL, van Hall G, Sander M, Calbet JA (2004) Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. J Exp Biol 207:3865–3871

    Article  PubMed  CAS  Google Scholar 

  42. Appenzeller O, Minko T, Pozharov V, Bonfichi M, Malcovati L, Gamboa J, Bernardi L (2003) Gene expression in the Andes; relevance to neurology at sea level. J Neurol Sci 207:37–41

    Article  PubMed  CAS  Google Scholar 

  43. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91:173–182

    PubMed  CAS  Google Scholar 

  44. León-Velarde F, Richalet JP (2006) Respiratory control in residents at high altitude: physiology and pathophysiology. High Alt Med Biol 7:125–137

    Article  PubMed  Google Scholar 

  45. Prabhakar NR (2000) Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol 88:2287–2295

    PubMed  CAS  Google Scholar 

  46. Lahiri S, Rozanov C, Cherniack NS (2000) Altered structure and function of the carotid body at high altitude and associated chemoreflexes. High Alt Med Biol 1:63–74

    Article  PubMed  CAS  Google Scholar 

  47. Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2(1):141–219

    PubMed  PubMed Central  Google Scholar 

  48. Moore LG, Harrison GL, McCullough RE, McCullough RG, Micco AJ, Tucker A, Weil JV, Reeves JT (1986) Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness. J Appl Physiol 60:1407–1412

    PubMed  CAS  Google Scholar 

  49. Penaloza D, Stella JA (2007) The heart and pulmonary circulation at high altitudes healthy highlanders and chronic mountain sickness. Circulation 115:1132–1146

    Article  PubMed  Google Scholar 

  50. Naeije R, Brimioulle S (2001) Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 5:67–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Liu K, Sun X, Wang S, Hu B (2007) Association between polymorphisms of HIF-1alpha C1772T and G1790A and hypoxic acclimation in high altitude in Tibetans. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 24:654–658

    PubMed  CAS  Google Scholar 

  52. Suzuki K, Kizaki T, Hitomi Y, Nukita M, Kimoto K, Miyazawa N, Kobayashi K, Ohnuki Y, Ohno H (2003) Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas. Med Hypotheses 61:385–389

    Article  PubMed  CAS  Google Scholar 

  53. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    Article  PubMed  CAS  Google Scholar 

  54. Xiang K, Ouzhuluobu, Peng Y, Yang Z, Zhang X, Cui C, Zhang H, Li M, Zhang Y, Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu T, Chen H, Shi H, Qi X, Su B (2013) Identification of a tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Mol Biol Evol 30:1889–1898

    Article  PubMed  CAS  Google Scholar 

  55. Leonard MO, Howell K, Madden SF, Costello CM, Higgins DG, Taylor CT, McLoughlin P (2008) Hypoxia selectively activates the CREB family of transcription factors in the in vivo lung. Am J Respir Crit Care Med 178:977–983

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Kim KS, Lee MK, Carroll J, Joh TH (1993) Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J Biol Chem 268:15689–15695

    PubMed  CAS  Google Scholar 

  57. Tsuchiya H, Iseda T, Hino O (1996) Identification of a novel protein (VBP-1) binding to the von Hippel-Lindau (VHL) tumor suppressor gene product. Cancer Res 56:2881–2885

    PubMed  CAS  Google Scholar 

  58. Lin CH, Chung MY, Chen WB, Chien CH (2007) Growth inhibitory effect of the human NIT2 gene and its allelic imbalance in cancers. FEBS J 274:2946–2956

    Article  PubMed  CAS  Google Scholar 

  59. Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie 85:747–752

    Article  PubMed  CAS  Google Scholar 

  60. Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8:523–534

    Article  PubMed  CAS  Google Scholar 

  61. Ferreira R, Ohneda K, Yamamoto M, Philipsen S (2005) GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 25:1215–1227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Cardinaux JR, Allaman I, Magistretti PJ (2000) Pro-inflammatory cytokines induce the transcription factors C/EBPbeta and C/EBPdelta in astrocytes. Glia 29:91–97

    Article  PubMed  CAS  Google Scholar 

  63. Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerød A, Kåresen R, Oh DS, Dressler LG, Lønning PE, Strausberg RL, Chanock S, Børresen-Dale AL, Perou CM (2004) Mutation of GATA3 in human breast tumors. Oncogene 23:7669–7678

    Article  PubMed  CAS  Google Scholar 

  64. El Rouby S, Newcomb EW (1996) Identification of Bcd, a novel proto-oncogene expressed in B-cells. Oncogene 13:2623–2630

    PubMed  Google Scholar 

  65. Cook WJ, Chase D, Audino DC, Denis CL (1994) Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol Cell Biol 14:629–640

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  PubMed  CAS  Google Scholar 

  67. Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253:1001–1007

    Article  PubMed  CAS  Google Scholar 

  68. Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  PubMed  CAS  Google Scholar 

  69. Tsuzuki S, Sekiguchi S, Hayakawa Y (2005) Regulation of growth-blocking peptide expression during embryogenesis of the cabbage armyworm. Biochem Biophys Res Commun 335:1078–1084

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work presented here was supported by CSIR under the projects SIP0006, MLP1401, and EXP0016. We acknowledge the support and encouragement of the director, CSIR-IGIB, during the preparation of this manuscript.

Author Contributions

Aastha Mishra researched and wrote the manuscript. Qadar Pasha conceptualized, researched, wrote, and edited the manuscript.

Conflicts of Interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Qadar Pasha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Mishra, A., Pasha, M.A.Q. (2014). HIF-1 and EGLN1 Under Hypobaric Hypoxia: Regulation of Master Regulator Paradigm. In: Singh, S., Prabhakar, N., Pentyala, S. (eds) Translational Research in Environmental and Occupational Stress. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1928-6_8

Download citation

Publish with us

Policies and ethics