Nanotoxicity and Cellular Stress Response: Physical and Chemical Properties and Their Link to Translational Research

  • Nicole M. Schaeublin
  • Kristen K. Comfort
  • John J. Schlager
  • Shashi Bala Singh
  • Saber M. Hussain


The incorporation of nanomaterials (NMs) in applications and consumer products has grown exponentially over the past 5 years. The distinctive physical and chemical properties of NMs make them ideal candidates for integration into countless products and for application into novel technical approaches for translational research, including advanced electronics, sensors, in situ cellular and tissue imaging, targeted drug delivery, and energetic/reactive systems. NMs can significantly differ in their chemical/physical properties compared to bulk-produced materials. These material property differences produce difficulties in creating a logical prediction of effect/response from exposure at the organism, organ, cellular, and subcellular level. Due to many NMs being stable, solid-phase materials in aqueous systems, their unique surface physical and chemical properties produce many novel activities that disrupt cellular behavior and function. NM may change the cell membrane’s ability to serve as a barrier, block a receptor’s capability to become stimulated, or disrupt a critical subcellular physiological pathway necessary for proper cell function. As such, it is important to explore the resultant system toxicity and, in turn, determine the key attributes of a nanomaterial’s deleterious effects and those that create true biocompatibility before material introduction to public use. The focus of this chapter is to review and demonstrate the importance of evaluating the biocompatibility of these materials. Data and arguments presented here focus to link material physical and chemical characteristics to specific cellular responses. It will be only through careful material synthesis and building strong fundamental understanding of materials in complex and dynamic bioeffects that NMs will be safely incorporated into broad target applications.


Primary Particle Size Core Composition Potential Untoward Effect Molecular Chemical Composition Primary Particle Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dutta S, Ganguly B (2012) Characterization of ZnO nanoparticles grown in presence of Folic acid template. J Nanobiotechnol 10(1):1–10CrossRefGoogle Scholar
  2. 2.
    Ellsworth DK, Verhulst D, Spitler TM, Sabacky BJ (2000) Titanium nanoparticles move to the marketplace. Chem Innov 30(12):30–35Google Scholar
  3. 3.
    Mahfuz H, Clements F, Rangari V, Dhanak V (2009) Enhanced stab resistance of armor composites with functionalized silica nanoparticles. J Appl Phys 105(6):1–7CrossRefGoogle Scholar
  4. 4.
    Hauqe N, Khalel RR, Parvez N, Yadav S, Hwisa N, Al-Sharif Ms, Awen BZ, Molvi K (2010) Nanotechnology in Cancer Therapy: Review. J Chem Pharm Res 2(5):161–168Google Scholar
  5. 5.
    Tsai C-S, Yu T-B, Chen C-T (2005) Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions. Chem Commun (34):4273–4275Google Scholar
  6. 6.
    Bhattacharya R, Patra CR, Earl A, Wang S, Katarya A, Lu L et al (2007) Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomed Nanotechnol Biol Med 3(3):224–238CrossRefGoogle Scholar
  7. 7.
    Ma H (ed) (1991) Colloidal gold: principles, methods, and applications. Academic, San DiegoGoogle Scholar
  8. 8.
    Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62(17–18):2661–2663CrossRefGoogle Scholar
  9. 9.
    Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM (2008) Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19(23):235104, Epub 2008/06/11PubMedCrossRefGoogle Scholar
  10. 10.
    Black KCL, Yi J, Rivera JG, Zelasko-Leon DC, Messersmith PB (2013) Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine (Lond) 8(1):17–28CrossRefGoogle Scholar
  11. 11.
    Maurer EI, Sharma M, Schlager JJ, Hussain SM (2014) Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications. Nanotoxicology 8(7):718–727, epub 1 Aug 2013PubMedGoogle Scholar
  12. 12.
    Carney RP, Kim JY, Qian H, Jin R, Mehenni H, Stellacci F et al (2011) Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nat Commun 2:335PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Cortesi R, Esposito E, Menegatti E, Gambari R, Nastruzzi C (1996) Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA. Int J Pharm 139 (1–2):69–78CrossRefGoogle Scholar
  14. 14.
    Mirska D, Schirmer K, Funari SS, Langner A, Dobner B, Brezesinski G (2005) Biophysical and biochemical properties of a binary lipid mixture for DNA transfection. Colloids Surf B Biointerfaces 40(1):51–59PubMedCrossRefGoogle Scholar
  15. 15.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327, Epub 2006/12/29PubMedCrossRefGoogle Scholar
  16. 16.
    Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S (2005) Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 22(1):2–5CrossRefGoogle Scholar
  17. 17.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627, Epub 2006/02/04PubMedCrossRefGoogle Scholar
  18. 18.
    Suganeswari M, Shering A, Bharathi MP, JayaSutha J (2011) Nano particles: a novel system in current century. Int J Pharm Biol Arch 2(3):847–854Google Scholar
  19. 19.
    Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150, Epub 2008/07/26PubMedCrossRefGoogle Scholar
  20. 20.
    Coulter JA, Jain S, Butterworth KT, Taggart LE, Dickson GR, McMahon SJ et al (2012) Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomedicine 7:2673–2685PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Silver S, Phung L, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33(7):627–634PubMedCrossRefGoogle Scholar
  22. 22.
    Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12PubMedCrossRefGoogle Scholar
  23. 23.
    Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR (2009) Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano 3(4):984–994, Epub 2009/04/07PubMedCrossRefGoogle Scholar
  24. 24.
    Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46(8):2668–2670PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668PubMedCrossRefGoogle Scholar
  26. 26.
    Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534PubMedCrossRefGoogle Scholar
  27. 27.
    Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419, Epub 2005/07/15PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983, Epub 2005/08/30PubMedCrossRefGoogle Scholar
  29. 29.
    Carlson C, Hussain SM, Schrand A, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619PubMedCrossRefGoogle Scholar
  30. 30.
    Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM (2010) Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnol 8:19, Epub 2010/08/20CrossRefGoogle Scholar
  31. 31.
    Riboh JC, Haes AJ, McFarland AD, Ranjit Yonzon C, Van Duyne RP (2003) A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B 107(8):1772–1780CrossRefGoogle Scholar
  32. 32.
    Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315PubMedCrossRefGoogle Scholar
  33. 33.
    Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24(2):62–67PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP et al (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692CrossRefGoogle Scholar
  35. 35.
    Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11(12):1385–1391PubMedCrossRefGoogle Scholar
  36. 36.
    Shukla S, Priscilla A, Banerjee M, Bhonde RR, Ghatak J, Satyam PV et al (2005) Porous gold nanospheres by controlled transmetalation reaction: a novel material for application in cell imaging. Chem Mater 17(20):5000–5005CrossRefGoogle Scholar
  37. 37.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–1730PubMedCrossRefGoogle Scholar
  38. 38.
    Abdelhalim MA, Jarrar BM (2012) Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration. J Nanobiotechnol 10:5, Epub 2012/01/27CrossRefGoogle Scholar
  39. 39.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949, Epub 2007/10/30PubMedCrossRefGoogle Scholar
  40. 40.
    Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J et al (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2(6):766–773, Epub 2006/12/29PubMedCrossRefGoogle Scholar
  41. 41.
    Coradeghini R, Gioria S, Garcia CP, Nativo P, Franchini F, Gilliland D et al (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216, Epub 2012/12/19PubMedCrossRefGoogle Scholar
  42. 42.
    Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS (2010) Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2(5):763–770, Epub 2010/07/22PubMedCrossRefGoogle Scholar
  43. 43.
    Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ et al (2008) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanoparticle Res 11(6):1361–1374CrossRefGoogle Scholar
  44. 44.
    Schaeublin NM, Braydich-Stolle LK, Maurer EI, Park K, MacCuspie RI, Afrooz AR et al (2012) Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model. Langmuir 28(6):3248–3258, Epub 2012/01/17PubMedCrossRefGoogle Scholar
  45. 45.
    George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M et al (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6(5):3745–3759PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Schaeublin NM, MK, Roberts JR, Hussain SM (2013) Silver nanowires induced inflammation in an in vitro human alveolar lung model. Unpublished data. Manuscript is in progressGoogle Scholar
  47. 47.
    Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568, Epub 2010/08/04PubMedCrossRefGoogle Scholar
  48. 48.
    Wang J, Rahman MF, Duhart HM, Newport GD, Patterson TA, Murdock RC et al (2009) Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology 30(6):926–933, Epub 2009/09/29PubMedCrossRefGoogle Scholar
  49. 49.
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711CrossRefGoogle Scholar
  50. 50.
    Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180PubMedCrossRefGoogle Scholar
  51. 51.
    Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871CrossRefGoogle Scholar
  52. 52.
    Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134, Epub 2009/02/12PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708PubMedCrossRefGoogle Scholar
  54. 54.
    Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4(1):153–159, Epub 2007/12/18PubMedCrossRefGoogle Scholar
  55. 55.
    Leonov AP, Zheng J, Clogston JD, Stern ST, Patri AK, Wei A (2008) Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano 2(12):2481–2488PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC (2008) Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 463(1–3):145–149PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Parab HJ, Chen HM, Lai T-C, Huang JH, Chen PH, Liu R-S et al (2009) Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J Phys Chem C 113(18):7574–7578CrossRefGoogle Scholar
  58. 58.
    Boca SC, Astilean S (2010) Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21(23):235601, Epub 2010/05/14PubMedCrossRefGoogle Scholar
  59. 59.
    Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347, Epub 2006/08/01PubMedCrossRefGoogle Scholar
  60. 60.
    Grabinski C, Schaeublin N, Wijaya A, D’Couto H, Baxamusa SH, Hamad-Schifferli K et al (2011) Effect of gold nanorod surface chemistry on cellular response. ACS Nano 5(4):2870–2879PubMedCrossRefGoogle Scholar
  61. 61.
    Orr G, Panther DJ, Phillips JL, Tarasevich BJ, Dohnalkova A, Hu D et al (2007) Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells. ACS Nano 1(5):463–475, Epub 2007/12/01PubMedCrossRefGoogle Scholar
  62. 62.
    Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105(33):11613–11618, Epub 2008/08/14PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001–1011PubMedCrossRefGoogle Scholar
  64. 64.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900PubMedCrossRefGoogle Scholar
  65. 65.
    Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ et al (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3(2):410–420, Epub 2011/01/14PubMedCrossRefGoogle Scholar
  66. 66.
    Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis. Characterization and immobilization. Chem Mater 17(6):1325–1330CrossRefGoogle Scholar
  67. 67.
    Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31(30):7606–7619PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang Y, Xu D, Li W, Yu J, Chen Y (2012) Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J Nanomater 2012:7Google Scholar
  69. 69.
    Sun Y-N, Wang C-D, Zhang X-M, Ren L, Tian X-H (2011) Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution. J Nanosci Nanotechnol 11(2):1210–1216PubMedCrossRefGoogle Scholar
  70. 70.
    Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ et al (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116(2):577–589, Epub 2010/05/22PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Freese C, Uboldi C, Gibson MI, Unger RE, Weksler BB, Romero IA et al (2012) Uptake and cytotoxicity of citrate-coated gold nanospheres: comparative studies on human endothelial and epithelial cells. Part Fibre Toxicol 9:23, Epub 2012/07/05PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Uboldi C, Bonacchi D, Lorenzi G, Hermanns MI, Pohl C, Baldi G et al (2009) Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Part Fibre Toxicol 6(1):18PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Braydich-Stolle LK, Speshock JL, Castle A, Smith M, Murdock RC, Hussain SM (2010) Nanosized aluminum altered immune function. ACS Nano 4(7):3661–3670PubMedCrossRefGoogle Scholar
  74. 74.
    Comfort KK, Maurer EI, Braydich-Stolle LK, Hussain SM (2011) Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5(12):10000–10008PubMedCrossRefGoogle Scholar
  75. 75.
    Li JJ, Zou L, Hartono D, Ong CN, Bay BH, Lanry Yung LY (2008) Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 20(1):138–142CrossRefGoogle Scholar
  76. 76.
    Hutter E, Boridy S, Labrecque S, Lalancette-Hébert M, Kriz J, Winnik FM et al (2010) Microglial response to gold nanoparticles. ACS Nano 4(5):2595–2606PubMedCrossRefGoogle Scholar
  77. 77.
    Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478PubMedCrossRefGoogle Scholar
  78. 78.
    Comfort KK, Maurer E, Hussain SM (2013) The biological impact of concurrent exposure to metallic nanoparticles and a static magnetic field. Bioelectromagentics 34(7):500–511Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Nicole M. Schaeublin
    • 1
  • Kristen K. Comfort
    • 2
  • John J. Schlager
    • 1
  • Shashi Bala Singh
    • 3
  • Saber M. Hussain
    • 1
  1. 1.Molecular Bioeffects Branch, Bioeffects Division, 711 Human Performance Wing, Human Effectiveness Directorate, Air Force Research LaboratoryWright Patterson AFBDaytonUSA
  2. 2.Department of Chemical and Materials EngineeringUniversity of DaytonDaytonUSA
  3. 3.Defence Institute of Physiology and Allied Sciences (DIPAS)New DelhiIndia

Personalised recommendations