Therapeutic Potential of Intermittent Hypoxia: Lessons from Respiratory Motor Plasticity

  • A. Navarrete-Opazo
  • E. A. Dale
  • Gordon S. Mitchell


Intermittent hypoxia (IH) is a subject of considerable interest since it has both beneficial and adverse effects. Unfortunately, a lack of consistency in the use of the term “intermittent hypoxia” has led to considerable confusion in the field. In reviewing available literature, the physiological and pathological impact of IH appears to be highly associated with the effective IH “dose.” IH consisting of modest hypoxic episodes (≥9 % inspired O2) and lesser numbers of hypoxia/reoxygenation events per day (≤15 cycles/day) is generally associated with beneficial effects in multiple body systems. In contrast, severe hypoxic episodes (<9 % inspired oxygen) and more frequent hypoxic episodes per day (40–2,400 cycles/day) shift the balance towards morbidity. In accordance, the impact of IH on the neural system controlling breathing is critically dependent on variables including the pattern of hypoxia (intermittent versus sustained), the severity of hypoxia within episodes, and the overall duration of IH exposure (minutes to years). A low IH “dose” (few episodes, moderate hypoxia) elicits serotonin-dependent spinal, respiratory motor plasticity that may be harnessed as a therapeutic approach to improve respiratory function in clinical conditions that impair breathing, such as cervical spinal injury. With a similar protocol but more severe hypoxic episodes, a distinct adenosine-dependent mechanism of spinal respiratory motor plasticity is observed. The cumulative effectives of repeated, low-dose IH (metaplasticity) suggest that repetitive, acute IH may represent a simple, safe, and effective treatment to promote meaningful therapeutic benefit in a range of clinical conditions that compromise respiratory (and nonrespiratory) somatic motor function.


Spinal Injury Intermittent Hypoxia Cervical Spinal Injury Chronic Intermittent Hypoxia Hypoxic Episode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A. Navarrete Opazo supported by a Fulbright Fellowship


  1. 1.
    Brooks D, Horner RL, Kozar LF, Render-Teixeira CL, Phillipson EA (1997) Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J Clin Invest 99:106–109PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lesske J, Fletcher EC, Bao G, Unger T (1997) Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens 15:1593–1603PubMedCrossRefGoogle Scholar
  3. 3.
    Fletcher EC (2000) Effect of episodic hypoxia on sympathetic activity and blood pressure. Respir Physiol 119:189–197PubMedCrossRefGoogle Scholar
  4. 4.
    Gozal D, Daniel JM, Dohanich GP (2001) Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J Neurosci 21:2442–2450PubMedGoogle Scholar
  5. 5.
    Champod AS, Eskes GA, Foster GE, Hanly PJ, Pialoux V, Beaudin AE, Poulin MJ (2013) Effects of acute intermittent hypoxia on working memory in young healthy adults. Am J Respir Crit Care Med 187:1148–1150PubMedCrossRefGoogle Scholar
  6. 6.
    Urdampilleta A, Gonzalez-Muniesa P, Portillo MP, Martinez JA (2012) Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J Physiol Biochem 68:289–304PubMedCrossRefGoogle Scholar
  7. 7.
    Lovett-Barr MR, Satriotomo I, Muir GD, Wilkerson JE, Hoffman MS, Vinit S, Mitchell GS (2012) Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 32:3591–3600PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Trumbower RD, Jayaraman A, Mitchell GS, Rymer WZ (2012) Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair 26:163–172PubMedCrossRefGoogle Scholar
  9. 9.
    Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD (2013) Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology 82:104PubMedCrossRefGoogle Scholar
  10. 10.
    Nichols NL, Gowing G, Satriotomo I, Nashold LJ, Dale EA, Suzuki M, Avalos P, Mulcrone PL, McHugh J, Svendsen CN, Mitchell GS (2013) Intermittent hypoxia and stem cell implants preserve breathing capacity in a rodent model of amyotrophic lateral sclerosis. Am J Respir Crit Care Med 187:535–542PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chiu LL, Chou SW, Cho YM, Ho HY, Ivy JL, Hunt D, Wang PS, Kuo CH (2004) Effect of prolonged intermittent hypoxia and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats. J Biomed Sci 11:838–846PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang JX, Chen XQ, Du JZ, Chen QM, Zhu CY (2005) Neonatal exposure to intermittent hypoxia enhances mice performance in water maze and 8-arm radial maze tasks. J Neurobiol 65:72–84PubMedCrossRefGoogle Scholar
  13. 13.
    Tam CS, Wong M, Tam K, Aouad L, Waters KA (2007) The effect of acute intermittent hypercapnic hypoxia treatment on IL-6, TNF-alpha, and CRP levels in piglets. Sleep 30:723–727PubMedPubMedCentralGoogle Scholar
  14. 14.
    Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT (2008) Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood) 233:627–650CrossRefGoogle Scholar
  15. 15.
    Haider T, Casucci G, Linser T, Faulhaber M, Gatterer H, Ott G, Linser A, Ehrenbourg I, Tkatchouk E, Burtscher M, Bernardi L (2009) Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. J Hypertens 27:1648–1654PubMedCrossRefGoogle Scholar
  16. 16.
    Lu XJ, Chen XQ, Weng J, Zhang HY, Pak DT, Luo JH, Du JZ (2009) Hippocampal spine-associated Rap-specific GTPase-activating protein induces enhancement of learning and memory in postnatally hypoxia-exposed mice. Neuroscience 162:404–414PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Vinit S, Lovett-Barr MR, Mitchell GS (2009) Intermittent hypoxia induces functional recovery following cervical spinal injury. Respir Physiol Neurobiol 169:210–217PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Basovich SN (2010) The role of hypoxia in mental development and in the treatment of mental disorders: a review. Biosci Trends 4:288–296PubMedGoogle Scholar
  19. 19.
    Serebrovskaya TV, Nikolsky IS, Nikolska VV, Mallet RT, Ishchuk VA (2011) Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol 12:243–252PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tsai YW, Yang YR, Wang PS, Wang RY (2011) Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS One 6:e24001PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wang ZH, Chen YX, Zhang CM, Wu L, Yu Z, Cai XL, Guan Y, Zhou ZN, Yang HT (2011) Intermittent hypobaric hypoxia improves postischemic recovery of myocardial contractile function via redox signaling during early reperfusion. Am J Physiol Heart Circ Physiol 301:H1695–H1705PubMedCrossRefGoogle Scholar
  22. 22.
    Querido JS, Sheel AW, Cheema R, Van Eeden S, Mulgrew AT, Ayas NT (2012) Effects of 10 days of modest intermittent hypoxia on circulating measures of inflammation in healthy humans. Sleep Breath 16:657–662PubMedCrossRefGoogle Scholar
  23. 23.
    Yokhana SS, Gerst DG 3rd, Lee DS, Badr MS, Qureshi T, Mateika JH (2012) Impact of repeated daily exposure to intermittent hypoxia and mild sustained hypercapnia on apnea severity. J Appl Physiol (Bethesda, MD: 1985) 112:367–377CrossRefGoogle Scholar
  24. 24.
    Tsai YW, Yang YR, Sun SH, Liang KC, Wang RY (2013) Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment. J Cereb Blood Flow Metab 33:764–773PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fletcher EC, Lesske J, Culman J, Miller CC, Unger T (1992) Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension 20:612–619PubMedCrossRefGoogle Scholar
  26. 26.
    McGuire M, Bradford A (2001) Chronic intermittent hypercapnic hypoxia increases pulmonary arterial pressure and haematocrit in rats. Eur Respir J 18:279–285PubMedCrossRefGoogle Scholar
  27. 27.
    Tahawi Z, Orolinova N, Joshua IG, Bader M, Fletcher EC (2001) Altered vascular reactivity in arterioles of chronic intermittent hypoxic rats. J Appl Physiol 90:2007–2013, discussion 2000PubMedGoogle Scholar
  28. 28.
    Douglas RM, Miyasaka N, Takahashi K, Latuszek-Barrantes A, Haddad GG, Hetherington HP (2007) Chronic intermittent but not constant hypoxia decreases NAA/Cr ratios in neonatal mouse hippocampus and thalamus. Am J Physiol Regul Integr Comp Physiol 292:R1254–R1259PubMedCrossRefGoogle Scholar
  29. 29.
    Savransky V, Nanayakkara A, Li J, Bevans S, Smith PL, Rodriguez A, Polotsky VY (2007) Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med 175:1290–1297PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zoccal DB, Bonagamba LG, Oliveira FR, Antunes-Rodrigues J, Machado BH (2007) Increased sympathetic activity in rats submitted to chronic intermittent hypoxia. Exp Physiol 92:79–85PubMedCrossRefGoogle Scholar
  31. 31.
    Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI (2009) Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 32:447–470PubMedPubMedCentralGoogle Scholar
  32. 32.
    Rasche K, Keller T, Tautz B, Hader C, Hergenc G, Antosiewicz J, Di Giulio C, Pokorski M (2010) Obstructive sleep apnea and type 2 diabetes. Eur J Med Res 15(Suppl 2):152–156PubMedGoogle Scholar
  33. 33.
    Dale EA, Ben Mabrouk F, Mitchell GS (2014) Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology (Bethesda) 29(1):39–48Google Scholar
  34. 34.
    Lavie L (2005) Sleep-disordered breathing and cerebrovascular disease: a mechanistic approach. Neurol Clin 23:1059–1075PubMedCrossRefGoogle Scholar
  35. 35.
    Nattie EE, Bartlett D Jr, Johnson K (1978) Pulmonary hypertension and right ventricular hypertrophy caused by intermittent hypoxia and hypercapnia in the rat. Am Rev Respir Dis 118:653–658PubMedGoogle Scholar
  36. 36.
    Shatilo VB, Korkushko OV, Ischuk VA, Downey HF, Serebrovskaya TV (2008) Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt Med Biol 9:43–52PubMedCrossRefGoogle Scholar
  37. 37.
    Melin A, Fauchier L, Dubuis E, Obert P, Bonnet P (2003) Heart rate variability in rats acclimatized to high altitude. High Alt Med Biol 4:375–387PubMedCrossRefGoogle Scholar
  38. 38.
    Pshennikova M, Malyshev I, Manukhina E, Meerson F (2005) Distinction between stress resistance and protective effects of adaptation in rats of different genetic strains: role of regulatory systems. In: Hargens A (ed) Adaptation biology and medicine, vol 4. Narosa, New Delhi, pp 29–40Google Scholar
  39. 39.
    Cohen RA, Weisbrod RM, Gericke M, Yaghoubi M, Bierl C, Bolotina VM (1999) Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res 84:210–219PubMedCrossRefGoogle Scholar
  40. 40.
    Behm R, Honig A, Griethe M, Schmidt M, Schneider P (1984) Sustained suppression of voluntary sodium intake of spontaneously hypertensive rats (SHR) in hypobaric hypoxia. Biomed Biochim Acta 43:975–985PubMedGoogle Scholar
  41. 41.
    Asha Devi S, Subramanyam MV, Vani R, Jeevaratnam K (2005) Adaptations of the antioxidant system in erythrocytes of trained adult rats: impact of intermittent hypobaric-hypoxia at two altitudes. Comp Biochem Physiol C Toxiol Pharmacol 140:59–67CrossRefGoogle Scholar
  42. 42.
    Wang JS, Chen LY, Fu LL, Chen ML, Wong MK (2007) Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. Eur J Appl Physiol 100:127–135PubMedCrossRefGoogle Scholar
  43. 43.
    Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82:2031–2037PubMedGoogle Scholar
  44. 44.
    Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ling Q, Sailan W, Ran J, Zhi S, Cen L, Yang X, Xiaoqun Q (2008) The effect of intermittent hypoxia on bodyweight, serum glucose and cholesterol in obesity mice. Pak J Biol Sci 11:869–875PubMedCrossRefGoogle Scholar
  46. 46.
    Fantuzzi G, Faggioni R (2000) Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol 68:437–446PubMedGoogle Scholar
  47. 47.
    Cartee GD, Douen AG, Ramlal T, Klip A, Holloszy JO (1991) Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol (Bethesda, MD: 1985) 70:1593–1600Google Scholar
  48. 48.
    Azevedo JL Jr, Carey JO, Pories WJ, Morris PG, Dohm GL (1995) Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes 44:695–698PubMedCrossRefGoogle Scholar
  49. 49.
    Mackenzie R, Maxwell N, Castle P, Brickley G, Watt P (2011) Acute hypoxia and exercise improve insulin sensitivity (S(I) (2*)) in individuals with type 2 diabetes. Diabetes Metab Res Rev 27:94–101PubMedCrossRefGoogle Scholar
  50. 50.
    Tagaito Y, Polotsky VY, Campen MJ, Wilson JA, Balbir A, Smith PL, Schwartz AR, O’Donnell CP (2001) A model of sleep-disordered breathing in the C57BL/6 J mouse. J Appl Physiol (Bethesda, MD: 1985) 91:2758–2766Google Scholar
  51. 51.
    Row BW, Kheirandish L, Cheng Y, Rowell PP, Gozal D (2007) Impaired spatial working memory and altered choline acetyltransferase (CHAT) immunoreactivity and nicotinic receptor binding in rats exposed to intermittent hypoxia during sleep. Behav Brain Res 177:308–314PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Perry JC, D’Almeida V, Lima MM, Godoi FR, Vital MA, Oliveira MG, Tufik S (2008) Intermittent hypoxia and sleep restriction: motor, cognitive and neurochemical alterations in rats. Behav Brain Res 189:373–380PubMedCrossRefGoogle Scholar
  53. 53.
    Wilkerson JE, Mitchell GS (2009) Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation. Exp Neurol 217:116–123PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Satriotomo I, Dale EA, Dahlberg JM, Mitchell GS (2012) Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in the phrenic motor nucleus. Exp Neurol 237:103–115PubMedCrossRefGoogle Scholar
  55. 55.
    Shao G, Zhang R, Wang ZL, Gao CY, Huo X, Lu GW (2006) Hypoxic preconditioning improves spatial cognitive ability in mice. Neurosignals 15:314–321PubMedCrossRefGoogle Scholar
  56. 56.
    Martin N, Pourie G, Bossenmeyer-Pourie C, Jazi R, Gueant JL, Vert P, Daval JL (2010) Conditioning-like brief neonatal hypoxia improves cognitive function and brain tissue properties with marked gender dimorphism in adult rats. Semin Perinatol 34:193–200PubMedCrossRefGoogle Scholar
  57. 57.
    Mitchell GS, Johnson SM (2003) Neuroplasticity in respiratory motor control. J Appl Physiol 94:358–374PubMedGoogle Scholar
  58. 58.
    Bach KB, Mitchell GS (1996) Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent. Respir Physiol 104:251–260PubMedCrossRefGoogle Scholar
  59. 59.
    Mitchell GS, Baker TL, Nanda SA, Fuller DD, Zabka AG, Hodgeman BA, Bavis RW, Mack KJ, Olson EB Jr (2001) Invited review: Intermittent hypoxia and respiratory plasticity. J Appl Physiol (Bethesda, MD: 1985) 90:2466–2475Google Scholar
  60. 60.
    Baker TL, Mitchell GS (2000) Episodic but not continuous hypoxia elicits long-term facilitation of phrenic motor output in rats. J Physiol 529(Pt 1):215–219PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mateika JH, Fregosi RF (1997) Long-term facilitation of upper airway muscle activities in vagotomized and vagally intact cats. J Appl Physiol (Bethesda, MD: 1985) 82:419–425Google Scholar
  62. 62.
    McKay LC, Janczewski WA, Feldman JL (2004) Episodic hypoxia evokes long-term facilitation of genioglossus muscle activity in neonatal rats. J Physiol 557:13–18PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ryan S, Nolan P (2009) Episodic hypoxia induces long-term facilitation of upper airway muscle activity in spontaneously breathing anaesthetized rats. J Physiol 587:3329–3342PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Navarrete-Opazo A, Mitchell G (2013) Inspiratory intercostal long term facilitation in unanesthetized rats. FASEB J 27:934–936Google Scholar
  65. 65.
    Mateika JH, Sandhu KS (2011) Experimental protocols and preparations to study respiratory long term facilitation. Respir Physiol Neurobiol 176:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cao KY, Zwillich CW, Berthon-Jones M, Sullivan CE (1992) Increased normoxic ventilation induced by repetitive hypoxia in conscious dogs. J Appl Physiol (Bethesda, MD: 1985) 73:2083–2088Google Scholar
  67. 67.
    Turner DL, Mitchell GS (1997) Long-term facilitation of ventilation following repeated hypoxic episodes in awake goats. J Physiol 499(Pt 2):543–550PubMedPubMedCentralGoogle Scholar
  68. 68.
    Mitchell GS, Powell FL, Hopkins SR, Milsom WK (2001) Time domains of the hypoxic ventilatory response in awake ducks: episodic and continuous hypoxia. Respir Physiol 124:117–128PubMedCrossRefGoogle Scholar
  69. 69.
    Sokolowska B, Pokorski M (2006) Ventilatory augmentation by acute intermittent hypoxia in the rabbit. J Physiol Pharmacol 57(Suppl 4):341–347PubMedGoogle Scholar
  70. 70.
    Olson EB Jr, Bohne CJ, Dwinell MR, Podolsky A, Vidruk EH, Fuller DD, Powell FL, Mitchel GS (2001) Ventilatory long-term facilitation in unanesthetized rats. J Appl Physiol (Bethesda, MD: 1985) 91:709–716Google Scholar
  71. 71.
    Terada J, Nakamura A, Zhang W, Yanagisawa M, Kuriyama T, Fukuda Y, Kuwaki T (2008) Ventilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. J Appl Physiol (Bethesda, MD: 1985) 104:499–507CrossRefGoogle Scholar
  72. 72.
    Harris DP, Balasubramaniam A, Badr MS, Mateika JH (2006) Long-term facilitation of ventilation and genioglossus muscle activity is evident in the presence of elevated levels of carbon dioxide in awake humans. Am J Physiol Regul Integr Comp Physiol 291:R1111–R1119PubMedCrossRefGoogle Scholar
  73. 73.
    Wadhwa H, Gradinaru C, Gates GJ, Badr MS, Mateika JH (2008) Impact of intermittent hypoxia on long-term facilitation of minute ventilation and heart rate variability in men and women: do sex differences exist? J Appl Physiol (Bethesda, MD: 1985) 104:1625–1633CrossRefGoogle Scholar
  74. 74.
    Pierchala LA, Mohammed AS, Grullon K, Mateika JH, Badr MS (2008) Ventilatory long-term facilitation in non-snoring subjects during NREM sleep. Respir Physiol Neurobiol 160:259–266PubMedCrossRefGoogle Scholar
  75. 75.
    Millhorn DE, Eldridge FL, Waldrop TG (1980) Prolonged stimulation of respiration by a new central neural mechanism. Respir Physiol 41:87–103PubMedCrossRefGoogle Scholar
  76. 76.
    Millhorn DE, Eldridge FL, Waldrop TG (1980) Prolonged stimulation of respiration by endogenous central serotonin. Respir Physiol 42:171–188PubMedCrossRefGoogle Scholar
  77. 77.
    Baker-Herman TL, Mitchell GS (2002) Phrenic long-term facilitation requires spinal serotonin receptor activation and protein synthesis. J Neurosci 22:6239–6246PubMedGoogle Scholar
  78. 78.
    Dale-Nagle EA, Hoffman MS, MacFarlane PM, Mitchell GS (2010) Multiple pathways to long-lasting phrenic motor facilitation. Adv Exp Med Biol 669:225–230PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Devinney MJ, Huxtable AG, Nichols NL, Mitchell GS (2013) Hypoxia-induced phrenic long-term facilitation: emergent properties. Ann N Y Acad Sci 1279:143–153PubMedCrossRefGoogle Scholar
  80. 80.
    Bavis RW, Mitchell GS (2003) Intermittent hypoxia induces phrenic long-term facilitation in carotid-denervated rats. J Appl Physiol (Bethesda, MD: 1985) 94:399–409Google Scholar
  81. 81.
    Sibigtroth CM, Mitchell GS (2011) Carotid chemoafferent activity is not necessary for all phrenic long-term facilitation following acute intermittent hypoxia. Respir Physiol Neurobiol 176:73–79PubMedCrossRefGoogle Scholar
  82. 82.
    Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A 100:10073–10078PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Peng YJ, Yuan G, Jacono FJ, Kumar GK, Prabhakar NR (2006) 5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. J Physiol 576:289–295PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130PubMedCrossRefGoogle Scholar
  85. 85.
    Kinkead R, Zhan WZ, Prakash YS, Bach KB, Sieck GC, Mitchell GS (1998) Cervical dorsal rhizotomy enhances serotonergic innervation of phrenic motoneurons and serotonin-dependent long-term facilitation of respiratory motor output in rats. J Neurosci 18:8436–8443PubMedGoogle Scholar
  86. 86.
    Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB Jr, Mitchell GS (2001) Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci 21:5381–5388PubMedGoogle Scholar
  87. 87.
    MacFarlane P, Vinit S, Roopra A, Mitchell G (2010) Enhanced phrenic long-term facilitation following repetitive acute intermittent hypoxia: role of glycolytic flux. FASEB J 24:15Google Scholar
  88. 88.
    Vinit S, MacFarlane PM, Satriotomo I, Mitchell GS (2010) Enhanced phrenic long-term facilitation (pLTF) following repetitive acute intermittent hypoxia. FASEB J 24:14Google Scholar
  89. 89.
    McGuire M, Zhang Y, White DP, Ling L (2003) Chronic intermittent hypoxia enhances ventilatory long-term facilitation in awake rats. J Appl Physiol (Bethesda, MD: 1985) 95:1499–1508Google Scholar
  90. 90.
    Mitchell G (2007) Respiratory plasticity following intermittent hypoxia: a guide for novel therapeutic approaches to ventilatory control disorders. In: Gaultier C (ed) Genetic basis for respiratory control disorders. Springer, New York, pp 291–311Google Scholar
  91. 91.
    Kinkead R, Bach KB, Johnson SM, Hodgeman BA, Mitchell GS (2001) Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comp Biochem Physiol A Mol Integr Physiol 130:207–218PubMedCrossRefGoogle Scholar
  92. 92.
    MacFarlane PM, Mitchell GS (2009) Episodic spinal serotonin receptor activation elicits long-lasting phrenic motor facilitation by an NADPH oxidase-dependent mechanism. J Physiol 587:5469–5481PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kinkead R, Mitchell GS (1999) Time-dependent hypoxic ventilatory responses in rats: effects of ketanserin and 5-carboxamidotryptamine. Am J Physiol 277:R658–R666PubMedGoogle Scholar
  94. 94.
    Fuller DD, Zabka AG, Baker TL, Mitchell GS (2001) Phrenic long-term facilitation requires 5-HT receptor activation during but not following episodic hypoxia. J Appl Physiol (Bethesda, MD: 1985) 90:2001–2006, discussion 2000Google Scholar
  95. 95.
    MacFarlane PM, Vinit S, Mitchell GS (2011) Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity. Neuroscience 178:45–55PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Devinney M, Fields D, Mitchell G (2013) Spinal PKC-θ activity is required for phrenic long-term facilitation after acute intermittent hypoxia. FASEB J 27:930–934CrossRefGoogle Scholar
  97. 97.
    Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ, Mitchell GS (2004) BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7:48–55PubMedCrossRefGoogle Scholar
  98. 98.
    Dale E, Fields D, Mitchell G (2013) Intrapleural siRNAs targeting TrkB attenuate acute intermittent hypoxia (AIH)-induced phrenic long-term facilitation. FASEB J 27:930–935CrossRefGoogle Scholar
  99. 99.
    Hoffman MS, Nichols NL, Macfarlane PM, Mitchell GS (2012) Phrenic long-term facilitation after acute intermittent hypoxia requires spinal ERK activation but not TrkB synthesis. J Appl Physiol 113:1184–1193PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Fuller DD, Bach KB, Baker TL, Kinkead R, Mitchell GS (2000) Long term facilitation of phrenic motor output. Respir Physiol 121:135–146PubMedCrossRefGoogle Scholar
  101. 101.
    McGuire M, Zhang Y, White DP, Ling L (2005) Phrenic long-term facilitation requires NMDA receptors in the phrenic motonucleus in rats. J Physiol 567:599–611PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Golder FJ, Ranganathan L, Satriotomo I, Hoffman M, Lovett-Barr MR, Watters JJ, Baker-Herman TL, Mitchell GS (2008) Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation. J Neurosci 28:2033–2042PubMedCrossRefGoogle Scholar
  103. 103.
    Hoffman MS, Mitchell GS (2011) Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation. J Physiol 589:1397–1407PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Nichols NL, Dale EA, Mitchell GS (2012) Severe acute intermittent hypoxia elicits phrenic long-term facilitation by a novel adenosine-dependent mechanism. J Appl Physiol (Bethesda, MD: 1985) 112:1678–1688CrossRefGoogle Scholar
  105. 105.
    Hoffman MS, Golder FJ, Mahamed S, Mitchell GS (2010) Spinal adenosine A2(A) receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia. J Physiol 588:255–266PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hoffman MS, Mitchell GS (2013) Spinal 5-HT7 receptors and protein kinase A constrain intermittent hypoxia-induced phrenic long-term facilitation. Neuroscience 250:632–643PubMedCrossRefGoogle Scholar
  107. 107.
    Dale-Nagle EA, Satriotomo I, Mitchell GS (2011) Spinal vascular endothelial growth factor induces phrenic motor facilitation via extracellular signal-regulated kinase and Akt signaling. J Neurosci 31:7682–7690PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Dale EA, Satriotomo I, Mitchell GS (2012) Cervical spinal erythropoietin induces phrenic motor facilitation via extracellular signal-regulated protein kinase and Akt signaling. J Neurosci 32:5973–5983PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dale E, Satriotomo I, Mitchell G (2012) Spinal VEGF induced phrenic motor facilitation is unaffected by pretreatment with repetitive acute intermittent hypoxia. FASEB J 26:704–710Google Scholar
  110. 110.
    NSCISC (2005) Annual report for the model spinal cord injury care systems. National Spinal Cord Injury Statistical Center, BirminghamGoogle Scholar
  111. 111.
    Nantwi KD, El-Bohy AA, Schrimsher GW, Reier PJ, Goshgarian HG (1999) Spontaneous functional recovery in a paralyzed hemidiaphragm following upper cervical spinal cord injury in adult rats. Neurorehabil Neural Repair 13:225–234CrossRefGoogle Scholar
  112. 112.
    Goshgarian HG (2003) The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol 94:795–810PubMedGoogle Scholar
  113. 113.
    Fuller DD, Baker-Herman TL, Golder FJ, Doperalski NJ, Watters JJ, Mitchell GS (2005) Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors. J Neurotrauma 22:203–213PubMedCrossRefGoogle Scholar
  114. 114.
    Fuller DD, Golder FJ, Olson EB Jr, Mitchell GS (2006) Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats. J Appl Physiol 100:800–806PubMedCrossRefGoogle Scholar
  115. 115.
    Lane MA, White TE, Coutts MA, Jones AL, Sandhu MS, Bloom DC, Bolser DC, Yates BJ, Fuller DD, Reier PJ (2008) Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat. J Comp Neurol 511:692–709PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Teitelbaum J, Borel CO, Magder S, Traystman RJ, Hussain SN (1993) Effect of selective diaphragmatic paralysis on the inspiratory motor drive. J Appl Physiol 74:2261–2268PubMedGoogle Scholar
  117. 117.
    Katagiri M, Young RN, Platt RS, Kieser TM, Easton PA (1994) Respiratory muscle compensation for unilateral or bilateral hemidiaphragm paralysis in awake canines. J Appl Physiol 77:1972–1982PubMedGoogle Scholar
  118. 118.
    Brichant JF, De Troyer A (1997) On the intercostal muscle compensation for diaphragmatic paralysis in the dog. J Physiol 500(Pt 1):245–253PubMedPubMedCentralGoogle Scholar
  119. 119.
    Johnson RA, Mitchell GS (2013) Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 189:419–428PubMedCrossRefGoogle Scholar
  120. 120.
    Golder FJ, Fuller DD, Davenport PW, Johnson RD, Reier PJ, Bolser DC (2003) Respiratory motor recovery after unilateral spinal cord injury: eliminating crossed phrenic activity decreases tidal volume and increases contralateral respiratory motor output. J Neurosci 23:2494–2501PubMedGoogle Scholar
  121. 121.
    Golder FJ, Mitchell GS (2005) Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury. J Neurosci 25:2925–2932PubMedCrossRefGoogle Scholar
  122. 122.
    Lovett-Barr MR, Sibigtroth CM, Mitchell GS (2007) Daily acute intermittent hypoxia improves respiratory function in rats with chronic cervical hemisection. FASEB J 21:A1292–A1293Google Scholar
  123. 123.
    Tester NJ, Fuller DD, Fromm JS, Spiess MR, Behrman AL, Mateika JH (2014) Long-term facilitation of ventilation in humans with chronic spinal cord injury. Am J Respir Crit Care Med 189(1):57–65PubMedGoogle Scholar
  124. 124.
    Fuller DD, Johnson SM, Olson EB Jr, Mitchell GS (2003) Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury. J Neurosci 23:2993–3000PubMedGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • A. Navarrete-Opazo
    • 1
  • E. A. Dale
    • 2
  • Gordon S. Mitchell
    • 1
  1. 1.Department of Comparative BiosciencesUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Physiological SciencesUCLALos AngelesUSA

Personalised recommendations