Skip to main content

Lessons from a 20-Year Investigation of Intermittent Hypoxia: Principles and Practices

  • Chapter
  • First Online:
Translational Research in Environmental and Occupational Stress
  • 630 Accesses

Abstract

Widespread use of the intermittent hypoxic training/treatment (IHT) methods in sports, military, and medical practice during recent decades has provoked a discussion: “What is ‘intermittent hypoxia’?” In contrast to studies from the former Soviet Union countries that emphasized mainly the beneficial effects of IHT on an organism, intermittent hypoxia research in Western Europe and North America was primarily focused on the detrimental effects associated with sleep apnea. However, during the past decade, such a gap of division between East and West is progressively shrinking, and mutual understanding on what “intermittent hypoxia” means becomes clearer. Potential mechanisms underlying both beneficial and adverse effects of IHT have been described. Basic investigations led to the proliferation of various methods of IHT exposure and the development of different medical equipment – hypoxicators – for its implementation in sport practice and military operations and also for clinical application. However, wide array of different protocols and measurements makes the results difficult to harmonize. Meanwhile, the mode of hypoxic influence (depth, duration, and intermittence) appeared to be critical for the determination of healing or harmful result. Therefore, special purposeful investigations are needed to elucidate basic mechanisms of different IHT effects depending on the modality of hypoxic stimuli and elaborate the most effective and safe regimen for the introduction in human practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb JC (2004) Physiological responses to intermittent hypoxia in humans. German Sport University, Boca Raton, 196pp

    Google Scholar 

  2. Gozal D, Kheirandish-Gozal L, Yang Wang, Zhang XL (2011) In: Pack AI (ed) Sleep apnea: pathogenesis, diagnosis and treatment. CRC Press, 570pp

    Google Scholar 

  3. Xi L, Serebrovskaya T (eds) (2009) Intermittent hypoxia: from molecular mechanisms to clinical applications. Nova Science, New York, p 615

    Google Scholar 

  4. Xi L, Serebrovskaya T (eds) (2012) Intermittent hypoxia and human diseases. Springer, London, p 316

    Google Scholar 

  5. Semenza GL (2012) Foreword. In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia and human diseases. Springer, London

    Google Scholar 

  6. Fletcher EC (2001) Invited review: physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol 90(4):1600–1605

    PubMed  CAS  Google Scholar 

  7. Prabhakar NR, Peng YJ, Jacono FJ, Kumar GK, Dick TE (2005) Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol 32:447–449

    Article  PubMed  CAS  Google Scholar 

  8. Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92:967–1003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Raghuraman G, Prabhakar NR, Kumar GK (2012) Differential regulation of tyrosine hydroxylase by continuous and intermittent hypoxia. Adv Exp Med Biol 758:381–385

    Article  PubMed  Google Scholar 

  10. Serebrovskaya TV (1992) Comparison of respiratory and circulatory human responses to progressive hypoxia and hypercapnia. Respiration 59(1):35–41

    Article  Google Scholar 

  11. Weil JV (2003) Variation in human ventilatory control – genetic influence on the hypoxic ventilatory response. Respir Physiol Neurobiol 135:239–246

    Article  PubMed  CAS  Google Scholar 

  12. Prabhakar NR, Kline DD (2002) Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Alt Med Biol 3(2):195–204

    Article  PubMed  Google Scholar 

  13. Serebrovskaya TV (2002) Intermittent hypoxia research in the former Soviet Union and the Commonwealth of Independent States (CIS): history and review of the concept and selected applications. High Alt Med Biol 3(2):205–221

    Article  PubMed  Google Scholar 

  14. Teppema LJ, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90(2):675–754

    Article  PubMed  CAS  Google Scholar 

  15. Peng YJ, Nanduri J, Raghuraman G, Wang N, Kumar GK, Prabhakar NR (2013) Role of oxidative stress induced endothelin converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol 98(11):1620–1630

    Article  PubMed  CAS  Google Scholar 

  16. Prabhakar NR (2013) Sensing hypoxia: physiology, genetics and epigenetics. J Physiol 591(9):2245–2257

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Belikova MV, Kolesnikova EE, Serebrovskaya TV (2012) Intermittent hypoxia and experimental Parkinson’s disease (Chapter 12). In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia and human diseases. Springer, London, pp 147–153

    Google Scholar 

  18. Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT (2008) Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood) 233(6):627–650

    Article  CAS  Google Scholar 

  19. Schmidt W (2002) Effects of intermittent exposure to high altitude on blood volume and erythropoietic activity. High Alt Med Biol 3(2):167–176

    Article  PubMed  CAS  Google Scholar 

  20. Lukyanova LD, Germanova EL, Kopaladze RA (2009) Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation. Bull Exp Biol Med 147(4):400–404 [In Russian]

    Article  PubMed  CAS  Google Scholar 

  21. Faiss R, Léger B, Vesin JM, Fournier PE, Eggel Y, Dériaz O, Millet GP (2013) Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One 8(2):e56522

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Mankovska IM, Gavenauskas BL, Hosar VI, Nazarenko AI, Rozova KV, Bratus LV (2009) Mechanisms of muscular tissue adaptation to intermittent hypoxia. Sport Med (Ukr) 1:3–11 [In Ukrainian]

    Google Scholar 

  23. Prokopov AF (2012) Intermittent hypoxia and health: from evolutionary aspects to mitochondria rejuvenation (Chapter 21). In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia and human diseases. Springer, London, pp 253–269

    Google Scholar 

  24. Viscor G, Javierre C, Pagès T, Ventura JL, Ricart A, Martin-Henao G, Azqueta C, Segura R (2009) Combined intermittent hypoxia and surface muscle electrostimulation as a method to increase peripheral blood progenitor cell concentration. J Transl Med 29:7–91

    Google Scholar 

  25. Serebrovskaya TV, Nikolsky IS, Nikolska VV, Mallet RT, Ishchuk VA (2011) Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol 12(3):243–252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Phillips MI, Losordo DW, Qin G (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 104(10):1209–1216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Ranera B, Remacha AR, Álvarez-Arguedas S, Romero A, Vázquez FJ, Zaragoza P, Martín-Burriel I, Rodellar C (2012) Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue. BMC Vet Res 8:142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Serebrovska TV, Nikolsky I, Ishchuk V (2010) Human adaptation to intermittent hypoxia: effects on hematopoietic stem cells and immune function. In: Wang P, Kuo C-H, Takeda N, Singal PK (eds) Cell adaptations and challenges, vol 6, Adaptation biology and medicine. Narosa Publisher, Canada, pp 181–191

    Google Scholar 

  29. Thompson JW, Dave KR, Young JI, Perez-Pinzon MA (2013) Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics 10(4):789–797

    Article  PubMed  CAS  Google Scholar 

  30. Prabhakar NR (2011) Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol 178(3):375–380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Wang ZH, Chen YX, Zhang CM, Wu L, Yu Z, Cai XL, Guan Y, Zhou ZN, Yang HT (2011) Intermittent hypobaric hypoxia improves postischemic recovery of myocardial contractile function via redox signaling during early reperfusion. Am J Physiol Heart Circ Physiol 301(4):H1695–H1705

    Article  PubMed  CAS  Google Scholar 

  32. Sazontova TG, Arkhipenko YuV (2009) Intermittent hypoxia in resistance of cardiac membrane structures: role of reactive oxygen species and redox signaling (Chapter 5). In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia: from molecular mechanisms to clinical applications. Nova Science, New York, pp 113–150

    Google Scholar 

  33. Lukyanova LD, Kirova YuI, Germanova EL (2012) Energotropic effects of intermittent hypoxia: role of succinate-dependent signaling (Chapter 20). In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia and human diseases. Springer, London, pp 239–252

    Google Scholar 

  34. Semenza GL, Prabhakar NR (2007) HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal 9(9):1391–1396

    Article  PubMed  CAS  Google Scholar 

  35. Drevytska T, Gavenauskas B, Drozdovska S, Nosar V, Dosenko V, Mankovska I (2012) HIF-3α mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise. Pathophysiology 19(3):205–214

    Article  PubMed  CAS  Google Scholar 

  36. Gluckman PD (2011) Epigenetics and metabolism in 2011: epigenetics, the life-course and metabolic disease. Nat Rev Endocrinol 8(2):74–76

    Article  PubMed  Google Scholar 

  37. Nanduri J, Makarenko V, Reddy VD, Yuan G, Pawar A, Wang N, Khan SA, Zhang X, Kinsman B, Peng YJ, Kumar GK, Fox AP, Godley LA, Semenza GL, Prabhakar NR (2012) Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A 109(7):2515–2520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Karash YM, Strelkov RB, Chizhov AY (1988) Normobaric hypoxia in treatment, prophylaxis and rehabilitation. Meditsina, Moscow, p 352

    Google Scholar 

  39. Berezovskii VA, Levashov MI (1992) Physiological premises and mechanisms of normalizing effect of normobaric hypoxia and inhalation therapy. Fiziol Zh 38(5):3–12

    PubMed  CAS  Google Scholar 

  40. Fesenko ME, Lisyana TO (1992) Approach to employment of hypoxic stimulation for treatment of lingering and relapsing bronchitis in children of early age. Fiziol Zh 38(5):31–33

    PubMed  CAS  Google Scholar 

  41. Basovich SN (2013) Trends in the use of preconditioning to hypoxia for early prevention of future life diseases. Biosci Trends 7(1):23–32

    PubMed  CAS  Google Scholar 

  42. Swanson RJ, Serebrovska ZA (2012) Intermittent hypoxia remedies male subfertility. In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia and human diseases (Chapter 18). Springer, London, pp 221–227

    Google Scholar 

  43. Berezovskii VA, Litovka IG, Kostyuchenko AS (2004) Low oxygen tension may defence the bone tissue from unloading simulated osteopenia. J Gravit Physiol 11(2):153–154

    Google Scholar 

  44. Guner I, Uzun DD, Yaman MO, Genc H, Gelisgen R, Korkmaz GG, Hallac M, Yelmen N, Sahin G, Karter Y, Simsek G (2013) The effect of chronic long-term intermittent hypobaric hypoxia on bone mineral density in rats: role of nitric oxide. Biol Trace Elem Res 154(2):262–267

    Article  PubMed  CAS  Google Scholar 

  45. Arkhipenko YV, Sazontova TG, Zhukova AG (2005) Adaptation to periodic hypoxia and hyperoxia improves resistance of membrane structures in heart, liver, and brain. Bull Exp Biol Med 140(3):278–281

    Article  PubMed  CAS  Google Scholar 

  46. Glazachev OS, Zvenigorodskaia LA, Dudnik EN, Iartseva LA, Mishchenkova TV, Platonenko AV, Spirina GK (2010) Interval hypoxic-hyperoxic training in the treatment of the metabolic syndrome. Eksp Klin Gastroenterol 7:51–56

    PubMed  Google Scholar 

  47. Gonchar O, Mankovska I (2012) Moderate hypoxia/hyperoxia attenuates acute hypoxia-induced oxidative damage and improves antioxidant defense in lung mitochondria. Acta Physiol Hung 99(4):436–446

    Article  PubMed  CAS  Google Scholar 

  48. Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, Roussel S, Schumann-Bard P, Bernaudin M (2009) Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke 40(10):3349–3355

    Article  PubMed  Google Scholar 

  49. Maslov LN, Mrochek AG, Hanus L, Pei J, Zhang Y, Wang H, Naryzhnaia NV (2012) Phenomenon of heart ischemic postconditioning. Ross Fiziol Zh Im I M Sechenova 98(8):943–961

    PubMed  CAS  Google Scholar 

  50. Joo SP, Xie W, Xiong X, Xu B, Zhao H (2013) Ischemic postconditioning protects against focal cerebral ischemia by inhibiting brain inflammation while attenuating peripheral lymphopenia in mice. Neuroscience 243:149–157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Xie R, Wang P, Ji X, Zhao H (2013) Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats. J Neurochem [Epub ahead of print]

    Google Scholar 

  52. Pokorski M, Serebrovskaya T (2009) Intermittent hypercapnia. In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia: from molecular mechanisms to clinical applications. Nova Science, New York, pp 297–310

    Google Scholar 

  53. Serebrovsky A, Serebrovska T (2009) Models and algorithms for the assessment of intermittent hypoxia application safety and efficacy in medical practice. In: Hypoxia and consequences: from molecule to malady. New York, Book of Abstracts, Session II, abstract # 25

    Google Scholar 

  54. Serebrovskaya TV, Nosar VI, Bratus LV, Gavenauskas BL, Mankovska IM (2013) Tissue oxygenation and mitochondrial respiration under different modes of intermittent hypoxia. High Alt Med Biol 14(3):280–288

    Article  PubMed  CAS  Google Scholar 

  55. Muza SR (2007) Military applications of hypoxic training for high-altitude operations. Med Sci Sports Exerc 39(9):1625–1631

    Article  PubMed  Google Scholar 

  56. Lopata VA, Serebrovskaya TV (2012) Hypoxicators: review of the operating principles and constructions (Chapter 24). In: Xi L, Serebrovskaya TV (eds) Intermittent hypoxia and human diseases. Springer, London, pp 291–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Serebrovskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Serebrovskaya, T.V. (2014). Lessons from a 20-Year Investigation of Intermittent Hypoxia: Principles and Practices. In: Singh, S., Prabhakar, N., Pentyala, S. (eds) Translational Research in Environmental and Occupational Stress. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1928-6_22

Download citation

Publish with us

Policies and ethics