Hypertension at High Altitude

  • Akpay Sarybaev
  • Deepak Mulajkar
  • Gaurav Sikri
  • Tsering Norboo
  • Amit Badhya
  • Shashi Bala Singh
  • Maramreddy Prasanna Reddy


Systemic hypoxia is associated with conditions like anemia, lung diseases, sleep disorders, breathing, and exposure to high altitude. The physiological responses including blood pressure regulation to acute, chronic, intermittent normobaric, and hypobaric hypoxia have been under intense investigation for the past many years; however, the regulatory mechanisms are incompletely understood. The available literature indicates a differential response to hypoxia in pulmonary versus systemic circulation. Multiple physiological and metabolic changes contribute towards high-altitude acclimatization; yet, in some individuals, exposure to high altitude could be life threatening due to maladaptation. There are a few studies on the prevalence of hypertension in high-altitude natives and sea-level dwellers exposed to high altitude (acute and chronic). Elevated blood pressure is an established risk factor for different cardiovascular disease and the evidence suggests that the blood pressure rises to a modest extent in patients with mild to moderate hypertension upon acute ascent to high altitude (Luks et al., Congenit Heart Dis 5:220–232, 2010), but there is no clear evidence on increased risk of complications due to increased systemic blood pressures. This book chapter reviews available literature on systemic blood pressure responses to high altitude.


High Altitude Hypertensive Patient Ambulatory Blood Pressure Monitoring Blood Pressure Response Systemic Hypertension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Luks AM, Stout K, Swenson ER (2010) Evaluating the safety of high-altitude travel in patients with adult congenital heart disease. Congenit Heart Dis 5:220–232PubMedCrossRefGoogle Scholar
  2. 2.
    Higgins JP, Tuttle T, Higgins JA (2010) Altitude and the heart: is going high safe for your cardiac patient? Am Heart J 159:25–32PubMedCrossRefGoogle Scholar
  3. 3.
    Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Why is VO2 max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J Physiol Regul Integr Comp Physiol 284:R304–R316PubMedGoogle Scholar
  4. 4.
    Curran LS, Zhuang J, Sun SF, Moore LG (1997) Ventilation and hypoxic ventilatory responsiveness in Chinese-Tibetan residents at 3,658 m. J Appl Physiol 83:2098–2104PubMedGoogle Scholar
  5. 5.
    Penaloza D, Arias-Stella J (2007) The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation 115:1132–1146PubMedCrossRefGoogle Scholar
  6. 6.
    Zhuang J, Droma T, Sun S, Janes C, McCullough RE, McCullough RG, Cymerman A, Huang SY, Reeves JT, Moore LG (1993) Hypoxic ventilatory responsiveness in Tibetan compared with Han residents of 3,658 m. J Appl Physiol 74:303–311PubMedGoogle Scholar
  7. 7.
    Wolfel EE, Selland MA, Mazzeo RS, Reeves JT (1994) Systemic hypertension at 4,300 m is related to sympathoadrenal activity. J Appl Physiol 76:1643–1650PubMedGoogle Scholar
  8. 8.
    Mazzeo RS, Reeves JT (2003) Adrenergic contribution during acclimatization to high altitude: perspectives from Pikes Peak. Exerc Sport Sci Rev 31:13–18PubMedCrossRefGoogle Scholar
  9. 9.
    Weisbrod CJ, Minson CT, Joyner MJ, Halliwill JR (2001) Effects of regional phentolamine on hypoxic vasodilatation in healthy humans. J Physiol 537:613–621PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Marshall JM (2000) Adenosine and muscle vasodilatation in acute systemic hypoxia. Acta Physiol Scand 168:561–573PubMedCrossRefGoogle Scholar
  11. 11.
    Markwald RR, Kirby BS, Crecelius AR, Carlson RE, Voyles WF, Dinenno FA (2011) Combined inhibition of nitric oxide and vasodilating prostaglandins abolishes forearm vasodilatation to systemic hypoxia in healthy humans. J Physiol 589:1979–1990PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Blitzer ML, Loh E, Roddy MA, Stamler JS, Creager MA (1996) Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J Am Coll Cardiol 28:591–596PubMedCrossRefGoogle Scholar
  13. 13.
    Janocha AJ, Koch CD, Tiso M, Ponchia A, Doctor A, Gibbons L, Gaston B, Beall CM, Erzurum SC (2011) Nitric oxide during altitude acclimatization. N Engl J Med 365:1942–1944PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lugliani R, Whipp BJ, Wasserman K (1973) A role for the carotid body in cardiovascular control in man. Chest 63:744–750PubMedCrossRefGoogle Scholar
  15. 15.
    Kaufmann PA, Schirlo C, Pavlicek V, Berthold T, Burger C, von Schulthess GK, Koller EA, Buck A (2001) Increased myocardial blood flow during acute exposure to simulated altitudes. J Nucl Cardiol 8:158–164PubMedCrossRefGoogle Scholar
  16. 16.
    Daugherty RM Jr, Scott JB, Dabney JM, Haddy FJ (1967) Local effects of O2 and CO2 on limb, renal, and coronary vascular resistances. Am J Physiol 213:1102–1110PubMedGoogle Scholar
  17. 17.
    Heistad DD, Abboud FM, Mark AL, Schmid PG (1975) Effect of hypoxemia on responses to norepinephrine and angiotensin in coronary and muscular vessels. J Pharmacol Exp Ther 193:941–950PubMedGoogle Scholar
  18. 18.
    Rimoldi SF, Sartori C, Seiler C, Delacretaz E, Mattle HP, Scherrer U, Allemann Y (2010) High-altitude exposure in patients with cardiovascular disease: risk assessment and practical recommendations. Prog Cardiovasc Dis 52:512–524PubMedCrossRefGoogle Scholar
  19. 19.
    Bosc LV, Resta T, Walker B, Kanagy NL (2010) Mechanisms of intermittent hypoxia induced hypertension. J Cell Mol Med 14:3–17PubMedCrossRefGoogle Scholar
  20. 20.
    Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90:47–112PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kuo TB, Yuan ZF, Lin YS, Lin YN, Li WS, Yang CC, Lai CJ (2011) Reactive oxygen species are the cause of the enhanced cardiorespiratory response induced by intermittent hypoxia in conscious rats. Respir Physiol Neurobiol 175(1):70–79PubMedCrossRefGoogle Scholar
  22. 22.
    Prabhakar NR, Kumar GK (2010) Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol 174(1–2):156–161PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nagai M, Hoshide S, Kario K (2010) Hypertension and dementia. Am J Hypertens 23:116–124PubMedCrossRefGoogle Scholar
  24. 24.
    Bartsch P, Gibbs JS (2007) Effect of altitude on the heart and the lungs. Circulation 116:2191–2202PubMedCrossRefGoogle Scholar
  25. 25.
    Heistad DD, Abboud FM, Dickinson W (1980) Richards lecture: circulatory adjustments to hypoxia. Circulation 61:463–470PubMedCrossRefGoogle Scholar
  26. 26.
    Lundberg JO, Weitzberg E (2005) NO generation from nitrite and its role in vascular control. Arterioscler Thromb Vasc Biol 25:915–922PubMedCrossRefGoogle Scholar
  27. 27.
    Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 67:99–145PubMedCrossRefGoogle Scholar
  28. 28.
    Calbet JA (2003) Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol 551:379–386PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kamat SR, Banerji BC (1972) Study of cardiopulmonary function on exposure to high altitude. I. Acute acclimatization to an altitude of 3,5000 to 4,000 meters in relation to altitude sickness and cardiopulmonary function. Am Rev Respir Dis 106:404–413PubMedGoogle Scholar
  30. 30.
    Kanstrup IL, Poulsen TD, Hansen JH, Andersen LJ, Bestle MH, Christensen NJ, Olsen NV (1999) Blood pressure and plasma catecholamines in acute and prolonged hypoxia: effects of local hypothermia. J Appl Physiol 87(6):2053–2058PubMedGoogle Scholar
  31. 31.
    Malhotra MS, Selvamurthy W, Purkayastha SS, Mukherjee AK, Mathew L, Dua GL (1976) Responses of the autonomic nervous system during acclimatization to high altitude in man. Aviat Space Environ Med 47:1076–1079PubMedGoogle Scholar
  32. 32.
    Palatini P, Businaro R, Berton G, Mormino P, Rossi GP, Racioppa A, Pessina AC, Dal Palu C (1989) Effects of low altitude exposure on 24-hour blood pressure and adrenergic activity. Am J Cardiol 64:1379–1382PubMedCrossRefGoogle Scholar
  33. 33.
    Roach RC, Houston CS, Honigman B, Nicholas RA, Yaron M, Grissom CK, Alexander JK, Hultgren HN (1995) How well do older persons tolerate moderate altitude? West J Med 162:32–36PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kriemler S, Jansen C, Linka A, Kessel-Schaefer A, Zehnder M, Schurmann T, Kohler M, Bloch K, Brunner-La Rocca HP (2008) Higher pulmonary artery pressure in children than in adults upon fast ascent to high altitude. Eur Respir J 32:664–669PubMedCrossRefGoogle Scholar
  35. 35.
    MacLean DA, Sinoway LI, Leuenberger U (1998) Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans. Circulation 98:1990–1992PubMedCrossRefGoogle Scholar
  36. 36.
    Richalet JP, Larmignat P, Rathat C, Keromes A, Baud P, Lhoste F (1988) Decreased cardiac response to isoproterenol infusion in acute and chronic hypoxia. J Appl Physiol (1985) 65:1957–1961Google Scholar
  37. 37.
    Somers VK, Mark AL, Abboud FM (1988) Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension 11:608–612PubMedCrossRefGoogle Scholar
  38. 38.
    Levine BD, Zuckerman JH, deFilippi CR (1997) Effect of high-altitude exposure in the elderly: the Tenth Mountain Division study. Circulation 96:1224–1232PubMedCrossRefGoogle Scholar
  39. 39.
    Canepa A, Chavez R, Hurtado A, Rotta A, Velasquez T (1956) Pulmonary circulation at sea level and at high altitudes. J Appl Physiol 9:328–336PubMedGoogle Scholar
  40. 40.
    Mirrakhimov MM, Meymanaliev TS (1984) High altitude cardiology. Frunze, Kyrgyzstan, 316 p (in Russian)Google Scholar
  41. 41.
    Vogel JA, Hartley LH, Cruz JC (1974) Cardiac output during exercise in altitude natives at sea level and high altitude. J Appl Physiol 36:173–176PubMedGoogle Scholar
  42. 42.
    Nakashima M (1983) High altitude medical research in Japan. Prog Clin Biol Res 136:173–182PubMedGoogle Scholar
  43. 43.
    Levett DZ, Fernandez BO, Riley HL, Martin DS, Mitchell K, Leckstrom CA, Ince C, Whipp BJ, Mythen MG, Montgomery HE, Grocott MP, Feelisch M (2011) The role of nitrogen oxides in human adaptation to hypoxia. Sci Rep 1:109PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bender PR, Groves BM, McCullough RE, McCullough RG, Huang SY, Hamilton AJ, Wagner PD, Cymerman A, Reeves JT (1988) Oxygen transport to exercising leg in chronic hypoxia. J Appl Physiol (1985) 65:2592–2597Google Scholar
  45. 45.
    Hansen J, Sander M (2003) Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol 546:921–929PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kumar R, Qadar Pasha MA, Khan AP, Gupta V, Grover SK, Norboo T, Srivastava KK, Selvamurthy W, Brahamchari SK (2003) Association of high-altitude systemic hypertension with the deletion allele-of the angiotensin-converting enzyme (ACE) gene. Int J Biometeorol 48:10–14PubMedCrossRefGoogle Scholar
  47. 47.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, De Buyzere M, De Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Ryden L, Sirenko Y, Stanton A et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34:2159–2219PubMedCrossRefGoogle Scholar
  48. 48.
    Faulhaber M, Flatz M, Gatterer H, Schobersberger W, Burtscher M (2007) Prevalence of cardiovascular diseases among alpine skiers and hikers in the Austrian Alps. High Alt Med Biol 8:245–252PubMedCrossRefGoogle Scholar
  49. 49.
    Honigman B, Theis MK, Koziol-McLain J, Roach R, Yip R, Houston C, Moore LG, Pearce P (1993) Acute mountain sickness in a general tourist population at moderate altitudes. Ann Intern Med 118:587–592PubMedCrossRefGoogle Scholar
  50. 50.
    Nault P, Halman S, Paradis J (2009) Ankle-brachial index on Kilimanjaro: lessons from high altitude. Wilderness Environ Med 20:72–76PubMedCrossRefGoogle Scholar
  51. 51.
    Ponchia A, Noventa D, Bertaglia M, Carretta R, Zaccaria M, Miraglia G, Pascotto P, Buja G (1994) Cardiovascular neural regulation during and after prolonged high altitude exposure. Eur Heart J 15:1463–1469PubMedGoogle Scholar
  52. 52.
    Savonitto S, Cardellino G, Doveri G, Pernpruner S, Bronzini R, Milloz N, Colombo MD, Sardina M, Nassi G, Marraccini P (1992) Effects of acute exposure to altitude (3,460 m) on blood pressure response to dynamic and isometric exercise in men with systemic hypertension. Am J Cardiol 70:1493–1497PubMedCrossRefGoogle Scholar
  53. 53.
    Hasler E, Suter PM, Vetter W (1997) Race specific altitude effects on blood pressure. J Hum Hypertens 11:435–438PubMedCrossRefGoogle Scholar
  54. 54.
    D’Este D, Mantovan R, Martino A, D’Este F, Artusi L, Allibardi P, Franceschi M, Zerio C, Pascotto P (1991) The behavior of the arterial pressure at rest and under exertion in normotensive and hypertensive subjects exposed to acute hypoxia at a median altitude. G Ital Cardiol 21:643–649PubMedGoogle Scholar
  55. 55.
    Wu TY, Ding SQ, Liu JL, Yu MT, Jia JH, Chai ZC, Dai RC, Zhang SL, Li BY, Pan L, Liang BZ, Zhao JZ, de Qi T, Sun YF, Kayser B (2007) Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt Med Biol 8:88–107PubMedCrossRefGoogle Scholar
  56. 56.
    Sizlan A, Ogur R, Ozer M, Irmak MK (2008) Blood pressure changes in young male subjects exposed to a median altitude. Clin Auton Res 18:84–89PubMedCrossRefGoogle Scholar
  57. 57.
    Erdmann J, Sun KT, Masar P, Niederhauser H (1998) Effects of exposure to altitude on men with coronary artery disease and impaired left ventricular function. Am J Cardiol 81:266–270PubMedCrossRefGoogle Scholar
  58. 58.
    Schmid JP, Noveanu M, Gaillet R, Hellige G, Wahl A, Saner H (2006) Safety and exercise tolerance of acute high altitude exposure (3454 m) among patients with coronary artery disease. Heart 92:921–925PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A (2007) 2007 ESH-ESC practice guidelines for the management of arterial hypertension: ESH-ESC task force on the management of arterial hypertension. J Hypertens 25:1751–1762PubMedCrossRefGoogle Scholar
  60. 60.
    Guazzi MD, Berti M, Doria E, Fiorentini C, Galli C, Pepi M, Tamborini G (1989) Enhancement of the pulmonary vasoconstriction reaction to alveolar hypoxia in systemic high blood pressure. Clin Sci (Lond) 76:589–594Google Scholar
  61. 61.
    Burtscher M (2007) Risk of cardiovascular events during mountain activities. Adv Exp Med Biol 618:1–11PubMedCrossRefGoogle Scholar
  62. 62.
    Beall CM (2003) High-altitude adaptations. Lancet 362(Suppl):s14–s15PubMedCrossRefGoogle Scholar
  63. 63.
    Frisancho AR (1993) Human adaptation and accommodation. University of Michigan Press, Ann ArborGoogle Scholar
  64. 64.
    Hultgren HN (1992) Effect of high altitude on cardiovascular diseases. J Wilderness Med 3:301–308CrossRefGoogle Scholar
  65. 65.
    Ruiz L, Penaloza D (1977) Altitude and hypertension. Mayo Clin Proc 52:442–445PubMedGoogle Scholar
  66. 66.
    Sun SF (1986) Epidemiology of hypertension on the Tibetan Plateau. Hum Biol 58:507–515PubMedGoogle Scholar
  67. 67.
    Monge MC, Monge M (1966) High altitude diseases: mechanism and management. Thomas, SpringfieldGoogle Scholar
  68. 68.
    Heath D, Williams RR (1977) Man at high altitude. The pathophysiology of acclimatization and adaptation. Churchill Livingstone, EdinburgGoogle Scholar
  69. 69.
    Ward M (1975) Mountain medicine a clinical study of cold and high altitude. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  70. 70.
    Faeh D, Gutzwiller F, Bopp M (2009) Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation 120:495–501PubMedCrossRefGoogle Scholar
  71. 71.
    Hanna JM (1999) Climate, altitude, and blood pressure. Hum Biol 71:553–582PubMedGoogle Scholar
  72. 72.
    Shrestha S, Shrestha A, Shrestha S, Bhattarai D (2012) Blood pressure in inhabitants of high altitude of Western Nepal. JNMA J Nepal Med Assoc 52:154–158PubMedGoogle Scholar
  73. 73.
    Fiori G, Facchini F, Pettener D, Rimondi A, Battistini N, Bedogni G (2000) Relationships between blood pressure, anthropometric characteristics and blood lipids in high- and low-altitude populations from Central Asia. Ann Hum Biol 27:19–28PubMedCrossRefGoogle Scholar
  74. 74.
    Gamboa A, Gamboa JL, Holmes C, Sharabi Y, Leon-Velarde F, Fischman GJ, Appenzeller O, Goldstein DS (2006) Plasma catecholamines and blood volume in native Andeans during hypoxia and normoxia. Clin Auton Res 16:40–45PubMedCrossRefGoogle Scholar
  75. 75.
    Otsuka K, Norboo T, Otsuka Y, Higuchi H, Hayajiri M, Narushima C, Sato Y, Tsugoshi T, Murakami S, Wada T, Ishine M, Okumiya K, Matsubayashi K, Yano S, Chogyal T, Angchuk D, Ichihara K, Cornelissen G, Halberg F (2005) Chronoecological health watch of arterial stiffness and neuro-cardio-pulmonary function in elderly community at high altitude (3524 m), compared with Japanese town. Biomed Pharmacother 59(Suppl 1):S58–S67PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tripathy V, Gupta R (2007) Blood pressure variation among Tibetans at different altitudes. Ann Hum Biol 34:470–483PubMedCrossRefGoogle Scholar
  77. 77.
    Tripathy V, Charan Satapathy K, Gupta R (2006) Nutritional status and hypertension among Tibetan adults in India. Hum Ecol 14:77–82Google Scholar
  78. 78.
    Zhao X, Li S, Ba S, He F, Li N, Ke L, Li X, Lam C, Yan L, Zhou Y, Wu Y (2012) Prevalence, awareness, treatment and control of hypertension among herdsmen living at 4300 in Tibet. Am J Hypertens 7:583–589CrossRefGoogle Scholar
  79. 79.
    Henley WN, Bellush LL, Notestine MA (1992) Reemergence of spontaneous hypertension in hypoxia-protected rats returned to normoxia as adults. Brain Res 579:211–218PubMedCrossRefGoogle Scholar
  80. 80.
    Kolar F, Ostadal B, Prochazka J, Pelouch V, Widimsky J (1989) Comparison of cardiopulmonary response to intermittent high-altitude hypoxia in young and adult rats. Respiration 56:57–62PubMedCrossRefGoogle Scholar
  81. 81.
    Milano G, Corno AF, Lippa S, Von Segesser LK, Samaja M (2002) Chronic and intermittent hypoxia induce different degrees of myocardial tolerance to hypoxia-induced dysfunction. Exp Biol Med (Maywood) 227:389–397Google Scholar
  82. 82.
    Gupte SA, Wolin MS (2012) Relationships between vascular oxygen sensing mechanisms and hypertensive disease processes. Hypertension 60:269–275PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Semenza GL, Prabhakar NR (2012) The role of hypoxia-inducible factors in oxygen sensing by the carotid body. Adv Exp Med Biol 758:1–5PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM (2011) Inflammation, immunity, and hypertension. Hypertension 57:132–140PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Paravicini TM, Touyz RM (2006) Redox signaling in hypertension. Cardiovasc Res 71:247–258PubMedCrossRefGoogle Scholar
  86. 86.
    Severinghaus JW, Bainton CR, Carcelen A (1966) Respiratory insensitivity to hypoxia in chronically hypoxic man. Respir Physiol 1:308–334PubMedCrossRefGoogle Scholar
  87. 87.
    Otsuka K, Norboo T, Otsuka Y, Higuchi H, Hayajiri M, Narushima C, Sato Y, Tsugoshi T, Murakami S, Wada T, Ishine M, Okumiya K, Matsubayashi K, Yano S, Choygal T, Angchuk D, Ichihara K, Cornelissen G, Halberg F (2005) Effect of aging on blood pressure in Leh, Ladakh, a high-altitude (3524 m) community, by comparison with a Japanese town. Biomed Pharmacother 59(Suppl 1):S54–S57PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Akpay Sarybaev
    • 1
  • Deepak Mulajkar
    • 2
  • Gaurav Sikri
    • 2
  • Tsering Norboo
    • 3
  • Amit Badhya
    • 4
  • Shashi Bala Singh
    • 5
  • Maramreddy Prasanna Reddy
    • 4
  1. 1.National Centre of Cardiology & Internal Medicine (NCCIM)BishkekKyrgyz Republic
  2. 2.High Altitude Medical Research Center, LehLadakhIndia
  3. 3.Ladakh Institute of Prevention, LehLadakhIndia
  4. 4.Cardiorespiratory DivisionDefense Institute of Physiology & Allied Sciences, Defense Research & Development OrganizationTimarpur, DelhiIndia
  5. 5.Defence Institute of Physiology and Allied Sciences (DIPAS)New DelhiIndia

Personalised recommendations