Inhaled Nitric Oxide Therapy for Treatment of High-Altitude Pulmonary Edema

  • G. Himashree
  • R. K. Gupta
  • B. A. K. Prasad
  • Shashi Bala Singh


High-altitude pulmonary edema (HAPE) is a severe form of acute mountain sickness. It may be fatal if not diagnosed well in time. Treatment includes descent to low altitude, supplemental oxygen, and calcium channel blocker. Endogenous production of nitric oxide in the lungs has been found to be reduced in individuals susceptible to HAPE. Administration of inhaled nitric oxide and oxygen combination has been found to be more effective in improving tissue oxygenation than giving oxygen or nifedipine. Additional benefits are less toxicity and rapid action due to inhalation mode of therapy. Commercially available inhaled nitric oxide delivery systems are ventilator-based, designed for patients of respiratory failure who require ventilatory support. However, HAPE patients breathe spontaneously and do not require ventilatory support. Hence there was a need for an indigenous NO delivery system tailor-made for HAPE patients. Two prototypes have been developed and currently undergoing clinical trials.


Nitric Oxide Pulmonary Hypertension Pulmonary Artery Pressure Pulmonary Blood Flow Acute Mountain Sickness 


  1. 1.
    Anand IS, Prasad BA, Chugh SS, Rao KR, Cornfield DN, Milla CE, Singh N, Singh S, Selvamurthy W (1998) Effects of inhaled nitric oxide and oxygen in high-altitude pulmonary edema. Circulation 98:2441–2445PubMedCrossRefGoogle Scholar
  2. 2.
    Anggard E (1994) Nitric oxide: mediator, murderer, and medicine. Lancet 343:1199–1206PubMedCrossRefGoogle Scholar
  3. 3.
    Auler AO Jr, Carmona MJ, Bochii EA, Bacal F, Firelli AI, Stoff NA, Jatene AD (1996) Low doses of inhaled nitric oxide in heart transplant recipients. J Heart Lung Transplant 15:443–450Google Scholar
  4. 4.
    Bacha EA, Herve P, Murakami S, Chapelier A, Maxmanian GM, de Montpreville V (1996) Lasting beneficial effect of short term inhaled nitric oxide on graft function after lung transplantation. Paris-Sud University Lung Transplantation Group. J Thorac Cardiovasc Surg 112:590–598PubMedCrossRefGoogle Scholar
  5. 5.
    Barefield E, Karle VA, Phillips JB III, Carlo WA (1996) Inhaled nitric oxide in term infants with hypoxemic respiratory failure. J Pediatr 129:279–286PubMedCrossRefGoogle Scholar
  6. 6.
    Barnes PJ (1995) Nitric oxide and airway disease. Ann Med 27:389–393PubMedCrossRefGoogle Scholar
  7. 7.
    Bartsch P, Maggiorini M, Ritter M, Noti C, Vock P, Oelz O (1991) Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med 325:1284–1289PubMedCrossRefGoogle Scholar
  8. 8.
    Beall CM, Laskowski D, Strohl KP, Soria R, Villena M, Vargas E, Alarcon AM, Gonzales C, Erzurum SC (2001) Pulmonary nitric oxide in mountain dwellers. Nature 414:411–412PubMedCrossRefGoogle Scholar
  9. 9.
    Blitzer ML, Loh E, Roddy MA, Stamler JS, Creager MA (1996) Endothelium derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in human. J Am Coll Cardiol 28:591–596PubMedCrossRefGoogle Scholar
  10. 10.
    Budts W, Pokreisz P, Nong Z, Pelt V, Gillijns H, Gerard R, Lyons R, Collen D, Bloch KD, Janssens S (2000) Aerosol gene transfer with inducible nitric oxide synthase reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation 102:2880–2885PubMedCrossRefGoogle Scholar
  11. 11.
    Busch T, Bartsch P, Pappert D, Grunig E, Hilderbrandt W, Elser H, Falke KJ, Swenson ER (2001) Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am J Respir Crit Care Med 163:368–373PubMedCrossRefGoogle Scholar
  12. 12.
    Cockrill BA, Kaemarek R, Thompson BT et al (1995) Response to inhaled nitric oxide identifies a subset of patients more likely to respond to high dose calcium channel blockers. Am J Respir Crit Care Med 151:728Google Scholar
  13. 13.
    Cooper CJ, Landzberg MJ, Anderson TJ, Charbonneau F, Creager MA, Ganz P, Selwyn AP (1996) Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation 93:266–271PubMedCrossRefGoogle Scholar
  14. 14.
    Cremona G, Asnaghi R, Baderna P, Brunetto A, Brutsaert T, Cavallaro C, Clark TM, Cogo A, Donis R, Lanfranchi P et al (2002) Pulmonary extra-vascular fluid accumulation in recreational climbers: a prospective study. Lancet 359:303–309PubMedCrossRefGoogle Scholar
  15. 15.
    Date H, Triantafillou AN, Trulock EP, Pohl MS, Cooper JD, Patterson GA (1996) Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg 111:913–919PubMedCrossRefGoogle Scholar
  16. 16.
    Davidson D, Barefield ES, Kattwinkel J et al (1998) Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. Pediatrics 101:325–334PubMedCrossRefGoogle Scholar
  17. 17.
    Day RW, Lynch JM, White KS, Ward RM (1996) Acute response to inhaled nitric oxide in newborns in respiratory failure and pulmonary hypertension. Pediatrics 98:698–705PubMedGoogle Scholar
  18. 18.
    Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, Hauser DL, Criner GJ, Davis K, Hyers TM, Papadakos P (1998) Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase trial. Crit Care Med 26:15–23PubMedCrossRefGoogle Scholar
  19. 19.
    Droma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T, Kubo K (2002) Positive association of endothelial nitric oxide synthase gene polymorphisms with high altitude pulmonary edema. Circulation 106:826–830PubMedCrossRefGoogle Scholar
  20. 20.
    Duplain H, Sartori C, Lepori M, Egli M, Allemann Y, Nicod P, Scherrer U (2000) Exhaled nitric oxide in high altitude pulmonary edema. Am J Respir Crit Care Med 162:221–224PubMedCrossRefGoogle Scholar
  21. 21.
    Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM (1991) Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 83:2038–2047PubMedCrossRefGoogle Scholar
  22. 22.
    Frostell CG, Blomqvist H, Hedenstrierna G, Lundberg J, Zapol WM (1993) Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology 78:427–435PubMedCrossRefGoogle Scholar
  23. 23.
    Adel G, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lung of patients with pulmonary hypertension. N Engl J Med 333:214–221CrossRefGoogle Scholar
  24. 24.
    Gupta RK, Selvaraj PT, Kumar H, Kain TC, Ray US (2008) Application of nitric oxide in treatment of high altitude pulmonary edema. DRDO project report no. DIPAS/03/2008Google Scholar
  25. 25.
    Gustafsson LE, Leone AM, Persson MG, Wiklund NP, Moncada S (1991) Endogenous nitric oxide is present in exhaled air of rabbits, guinea pig and humans. Biochem Biophys Res Commun 181:852–857PubMedCrossRefGoogle Scholar
  26. 26.
    Hackett PH, Rennie D (1976) The incidence, importance and prophylaxis of acute mountain sickness. Lancet 2:1149–1155PubMedCrossRefGoogle Scholar
  27. 27.
    Hackett PH, Roach RC, Hartig GS, Greene ER, Levine BD (1993) The effect of vasodilators on pulmonary hemodynamics in high altitude pulmonary edema: a comparison. Md Med J 42:641–645Google Scholar
  28. 28.
    Hackett P, Rennie D (2002) High altitude pulmonary edema. JAMA 287:2275–2278PubMedCrossRefGoogle Scholar
  29. 29.
    Hackett P, Roach RC (2001) High altitude illness. N Engl J Med 345:107–114PubMedCrossRefGoogle Scholar
  30. 30.
    Dalton HJ, (1998) Inhaled nitric oxide: medical miracle or passing fad? Respir Care 43:978–987Google Scholar
  31. 31.
    Himashree G, Chattopdhya PK, Selvamurthy W (2005) Indigensisation of nitric oxide therapy for treatment of HAPE. Published in trends in respiratory diseases, The fourth Sir Dorabji Tata symposium, Tata McGraw Hill, India, pp 131–149Google Scholar
  32. 32.
    Himashree G (2007) Use of nitric oxide at high altitude – advantage and challenges. Proceedings of 10th annual conference of Indian Association of Cardiovascular and Thoracic Anaesthesiologists, p 86Google Scholar
  33. 33.
    Hlastala MP, Lamm WJ, Karp A, Polissar NL, Starr IR, Glenny RW (2003) Spatial distribution of hypoxic pulmonary vasoconstriction in the supine pig. J Appl Physiol 96:1589–1599PubMedCrossRefGoogle Scholar
  34. 34.
    Hoit BD, Dalton ND, Erzurum SC, Laskowski D, Strohl KP, Beall CM (2005) Nitric oxide and cardiopulmonary hemodynamics in Tibetan highlanders. J Appl Physiol 99:1796–1801PubMedCrossRefGoogle Scholar
  35. 35.
    Hopkins SR, Garg J, Bolar DS, Balouch J, Levin DL (2005) Pulmonary blood flow heterogeneity during hypoxia and high altitude pulmonary edema. Am J Respir Crit Care Med 171:83–87PubMedCrossRefGoogle Scholar
  36. 36.
    Hultgren HN, Groover RF, Hartley LH (1971) Abnormal circulatory responses to high altitude in subjects with a previous history of high altitude pulmonary edema. Circulation 44:759–770PubMedCrossRefGoogle Scholar
  37. 37.
    Hultgren HN (1997) High altitude medicine. Hultgren Publications, StanfordGoogle Scholar
  38. 38.
    Hultgren HN (1995) High altitude pulmonary edema: current concepts. Adv Exp Med Biol 381:15–25CrossRefGoogle Scholar
  39. 39.
    Hultgren HN (1982) Pulmonary hypertension and pulmonary edema. In: Loeppky JA, Riedesel ML (eds) Oxygen transport to human tissue. Elsevier/North Holland, New York, pp 243–254Google Scholar
  40. 40.
    Ignarro LJ, Buga GM, Wood KD, Byrns RE, Chaudhuri G (1987) Endothelium derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jerome SJW (1996) High altitude pulmonary edema. N Engl J Med 334:662PubMedCrossRefGoogle Scholar
  42. 42.
    Jones PR, Hooper RH, Stopp N, Moore NA (2000) Nitric oxide delivery to the lung: a model. Eur J Anaesthesiol 17:160–167PubMedCrossRefGoogle Scholar
  43. 43.
    Kinsella JP, Truog WE, Walsh WF et al (1997) Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 131:55–62PubMedCrossRefGoogle Scholar
  44. 44.
    Kobzik L, Bredt DS, Lowenstein CJ, Drazen J, Gaston B, Sugarbaker D, Stamler JS (1993) Nitric oxide synthase in human and rat lung: Immunocytochemical and histochemical localisation. Am J Respir Cell Mol Biol 9:371–377PubMedCrossRefGoogle Scholar
  45. 45.
    Lunn R (1995) Subspecialty clinics: anesthesiology; inhaled nitric oxide therapy. Mayo Clin Proc 70:247–255PubMedCrossRefGoogle Scholar
  46. 46.
    Moncada S, Palmer RMJ, Higgs EA (1991) NO: physiology, pathophysiology & pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  47. 47.
    Myles PS, Venema HR (1995) Avoidance of cardiopulmonary bypass during bilateral sequential lung transplantation using inhaled nitric oxide. J Cardiothorac Vasc Anesth 9:571–574PubMedCrossRefGoogle Scholar
  48. 48.
    Neonatal Inhaled Nitric Oxide Study Group (NINOS) (1997) Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med 336:597–604CrossRefGoogle Scholar
  49. 49.
    Voelkel NF (2002) High altitude pulmonary edema. N Engl J Med 346:1606–1607PubMedCrossRefGoogle Scholar
  50. 50.
    Oelz O, Maggiorini M, Ritter M, Noti C, Waber U, Vock P, Bartsch P (1992) Pathophysiology, prevention and therapy of altitude pulmonary edema. Schweiz Med Wochenschr 122:151–1158Google Scholar
  51. 51.
    Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium,-derived relaxing factor. Nature 327:524–526PubMedCrossRefGoogle Scholar
  52. 52.
    Penaloza D, Sime F (1969) Circulatory dynamics during high altitude pulmonary edema. Am J Cardiol 23:369–378PubMedCrossRefGoogle Scholar
  53. 53.
    Persson MG, Gustaffson LE, Wiklund NP, Moncada S, Hedquist P (1990) Regulation of pulmonary circulation by nitric oxide. Acta Physiol Scand 140:449–457PubMedCrossRefGoogle Scholar
  54. 54.
    Phillips CR, Giraud GD, Holden WE (1996) Exhaled nitric oxide during exercise: site of release and modulation by ventilation and blood flow. J Appl Physiol 80:1865–1871PubMedGoogle Scholar
  55. 55.
    Roberts JD Jr, Fineman JR, Morin FC III et al (1997) Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. N Engl J Med 336:605–610PubMedCrossRefGoogle Scholar
  56. 56.
    Rossaint R, Falke KJ, Lopedz F, Salma K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399–405PubMedCrossRefGoogle Scholar
  57. 57.
    Sartori C, Vollenweider L, Loffler BM, Delabays A, Nicod P, Bartsch P, Scherrer U (1999) Exaggerated endothelin release in high altitude pulmonary edema. Circulation 99:2665–2668PubMedCrossRefGoogle Scholar
  58. 58.
    Scherrer U, Rexhaj E, Jayet P, Allemann Y, Sartori C (2010) New insights in the pathogenesis of high-altitude pulmonary edema. Prog Cardiovasc Dis 52:485–492PubMedCrossRefGoogle Scholar
  59. 59.
    Scherrer U, Vollenweider L, Delabays A, Savcic M, Eichenberger U, Kleger G, Fikrle A, Ballmer PE, Nicod P, Bartsch P (1996) Inhaled nitric oxide for high altitude pulmonary edema. N Engl J Med 334:624–629PubMedCrossRefGoogle Scholar
  60. 60.
    Schoene RB, Hackett PH, Henderson WR, Sage EH, Chow M, Roach RC, Mills WJ, Martin TR (1986) High altitude pulmonary edema: characteristic of lung lavage fluid. JAMA 256:63–69PubMedCrossRefGoogle Scholar
  61. 61.
    Schoene R, Swenson E, Hultgren H (2001) High altitude pulmonary edema. In: Hornbein TF, Schoene RB (eds) High altitude. An exploration of human adaptation. Lung biology in health and disease, vol 161. Marcel Dekker, New York, pp 777–814Google Scholar
  62. 62.
    Selvamurthy W, Dass D, Himashree G (2005) Pathophysiology of respiratory maladies at high altitude. Published in trends in respiratory diseases, The fourth Sir Dorabji Tata symposium, Tata McGraw Hill, India, pp111–119Google Scholar
  63. 63.
    Semigram MJ, Cockrill BA, Kaemarek R, Thompson BT, Zapol WM, Dee GW, Fifer MA (1994) Hemodynamic effects of inhaled nitric oxide in heart failure. J Am Coll Cardiol 24:982–988CrossRefGoogle Scholar
  64. 64.
    Severinghaus JW (1971) Transarterial leakage: a possible mechanism of high altitude pulmonary edema. In: Porter R, Knight J (eds) High altitude physiology: cardiac and respiratory aspects. Churchill Livingstone, London, pp 61–77Google Scholar
  65. 65.
    Snell GI, Salmonsen RF, Bergin P, Esmore DS, Khan S, William TJ (1995) Inhaled nitric oxide used as a bridge to heart lung transplantation in a patient with end stage pulmonary hypertension. Am J Respir Crit Care Med 151:1263–1266PubMedGoogle Scholar
  66. 66.
    Stamler JS, Loh E, Roddy M, Currie KE, Creager MA (1994) Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89:2035–2040PubMedCrossRefGoogle Scholar
  67. 67.
    Swenson ER, Maggiorini M, Mongovin S, Gibbs JS, Greve I, Mairbauri H, Bartsch P (2002) Pathogenesis of high altitude pulmonary edema: inflammation is not an etiologic factor. JAMA 287:2228–2235PubMedCrossRefGoogle Scholar
  68. 68.
    The Franco-Belgium Collaborative NO Trial Group (1999) Early compared with delayed inhaled nitric oxide in moderately hypoxaemic neonates with respiratory failure: a randomized controlled trial. Lancet 354:1066–1071CrossRefGoogle Scholar
  69. 69.
    Thibeault DW, Rexaiekhaligh MH, Ekekezie I, Truog WE (1999) Compressed air as a source of inhaled oxidants in intensive care units. Am J Perinatol 16:497–501PubMedCrossRefGoogle Scholar
  70. 70.
    Tracey WR, Xue C, Klinghoffer V, Barlow J, Pollock JS, Forstermann U, Johns RA (1994) Immunocytochemical detection of inducible NO synthase in human lung. Am J Physiol 266:722–727Google Scholar
  71. 71.
    Visscher MB (1962) Studies on embolization of lung vessel. Med Thorac 19:334–340PubMedGoogle Scholar
  72. 72.
    Wang W, Zhang X, Ma Y (1998) Low-concentration nitrous oxide inhalation in the treatment of high altitude pulmonary edema. Zhonghua Jie He He Hu Xi Za Zhi 21:12–14Google Scholar
  73. 73.
    Wessel DL, Adatia I, Giglia TM, Thomson KTJ (1993) Use of inhaled nitric oxide and acetylcholine in evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation 88:2128–2138PubMedCrossRefGoogle Scholar
  74. 74.
    Wessel DL, Adatia I, Van Marter LJ et al (1997) Improved oxygenation in randomized trials of inhaled nitric oxide for persistent pulmonary hypertension of the newborn. Pediatrics 100:E7PubMedCrossRefGoogle Scholar
  75. 75.
    West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742PubMedGoogle Scholar
  76. 76.
    Whayne TF Jr, Severinghaus JW (1968) Experimental hypoxic pulmonary edema in the rat. J Appl Physiol 25:729–737PubMedGoogle Scholar
  77. 77.
    Xue C, Johns RA (1995) Endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333:1642–1644PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • G. Himashree
    • 1
  • R. K. Gupta
    • 1
  • B. A. K. Prasad
    • 1
  • Shashi Bala Singh
    • 2
  1. 1.High Altitude Physiology GroupDefence Institute of Physiology and Allied Sciences (DIPAS)Timarpur, DelhiIndia
  2. 2.Defence Institute of Physiology and Allied Sciences (DIPAS)New DelhiIndia

Personalised recommendations