Skip to main content

Methylmercury and Alzheimer’s Disease

  • Chapter
  • First Online:
Toxic Effects of Mercury
  • 1371 Accesses

Abstract

Methylmercury, a pollutant produced by various industrial activities, is a potent neurotoxin that has now caused serious contamination issues within our oceans. As a fat-soluble molecule, methylmercury enters the food chain and accumulates in the flesh of the fish that then may end up in our supermarkets. Consuming larger, longer living fish on a regular basis is now known to pose a serious health hazard, especially for children and pregnant women who are consequently advised to limit (or even avoid) the intake of some species such as fresh tuna or marlin.

Alzheimer’s is the cleverest thief, because she not only steals from you, but she steals the very thing you need to remember what’s been stolen.

(Jarod Kintz)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JW, Mutkus LA, Aschner M (2001) Mercuric chloride, but not methylmercury, inhibits glutamine synthetase activity in primary cultures of cortical astrocytes. Brain Res 891:148–157

    Article  CAS  PubMed  Google Scholar 

  • Arendt Th (2002) Neuronale pathologie. In: Beyreuther K, Einhäupl KM, Förstl H, Kurz A (eds) Demenzen. Thieme, Stuttgart, pp 106–117

    Google Scholar 

  • Aschner M, Yao CP, Allen JW, Tan KH (2000) Methylmercury alters glutamate transport in astrocytes. Neurochem Int 37:188–206

    Article  Google Scholar 

  • Basun H, Forssell LG, Wetterberg L, Winblad B (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm [P-D Sect] 3:231–258

    Google Scholar 

  • Bleich S, Romer K, Wiltfang J, Kornhuber J (2003) Glutamate and the glutamate receptor system: a target for drug action. Int J Geriatr Psychiatry 18:S33–S40

    Article  PubMed  Google Scholar 

  • Braak H, Braak E, Yilmazer D, Bohl J (1995) Age-related changes of the human cerebral cortex. In: Cruz-Sanchez FF, Ravid R, Cuzner ML (eds) Neuropathological diagnostic criteria for brain banking. Biomedical Health Research IOS Press, Amsterdam, pp 14–19

    Google Scholar 

  • Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer’s disease. Alzheimer’s Res 3:235–247

    Google Scholar 

  • Braak E, Griffing K, Arai K, Bohl J, Bratzke H, Braak H (1999) Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci 249:14–22

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Schultz C, Braak E (2000) Vulnerability of select neuronal types to Alzheimer’s disease. Ann N Y Acad Sci 924:53–61

    Article  CAS  PubMed  Google Scholar 

  • Breteler MM, Claus JJ, van Duijn CM, Launer LJ, Hofman A (1992) Epidemiology of Alzheimer’s. Epidemiol Rev 14:59–82

    CAS  PubMed  Google Scholar 

  • Brookes N (1992) In vitro evidence for the role of glutamate in the CNS toxicity of mercury. Toxicology 76:245–256

    Article  CAS  PubMed  Google Scholar 

  • Brookmeyer R, Gray S (2000) Methods for projecting the incidence and prevalence of chronic diseases in aging populations: application to Alzheimer’s. Stat Med 19:1481–1493

    Article  CAS  PubMed  Google Scholar 

  • Bush AI (2002) Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Aging 23:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Bush AI (2003a) Copper, zinc, and the metallobiology of Alzheimer’s disease. Alzheimer Dis Assoc Disord 17:147–150

    Article  PubMed  Google Scholar 

  • Bush AI (2003b) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA (2002) Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Hensley K, Cole P et al (1997) Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J Neurochem 68:2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Cedrola S, Guzzi G, Ferrari D et al (2003) Inorganic mercury changes the fate of murine CNS stem cells. FASEB J 17:869–871

    CAS  PubMed  Google Scholar 

  • Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM (1998) Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55:1449–1455

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  CAS  PubMed  Google Scholar 

  • Cornett CR, Markesbery WR, Ehmann WD (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19:339–346

    CAS  PubMed  Google Scholar 

  • Crapper McLachlan DR, Dalton AJ, Kruck TP et al (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337:1304–1308

    Article  CAS  PubMed  Google Scholar 

  • David S, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res 54:276–287

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW (2001) Neuropathology of Alzheimer’s disease and other dementias. Clin Geriatr Med 17:209–228

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW, Crystal HA, Mattiace LA et al (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189

    Article  CAS  PubMed  Google Scholar 

  • Donix M, Poettrich K, Weiss PH, Werner A, von Kummer R, Fink GR, Holthoff VA (2010) Age-dependent differences in the neural mechanisms supporting long-term declarative memories. Arch Clin Neuropsychol 25:383–395

    Article  PubMed  Google Scholar 

  • Drasch G, Schupp I, Riedl G, Günther G (1992) Einfluß von Amalgamfüllungen auf die Quecksilberkonzentration in menschlichen Organen. Dtsch Zahnarztl Z 47:490–496

    CAS  Google Scholar 

  • Drasch G, Schupp I, Hofl H, Reinke R, Roider G (1994) Mercury burden of human fetal and infant tissues. Eur J Pediatr 153:607–610

    Article  CAS  PubMed  Google Scholar 

  • Drasch G, der Mail S, Schlosser C, Roider G (2000) Content of non-mercury-associated selenium in human tissues. Biol Trace Elem Res 77:219–230

    Article  CAS  PubMed  Google Scholar 

  • Duhr EF, Pendergrass JC, Slevin JT, Haley BE (1993) HgEDTA complex inhibits GTP interactions with the E-site of brain beta-tubulin. Toxicol Appl Pharmacol 122:273–280

    Article  CAS  PubMed  Google Scholar 

  • Eggleston DW, Nylander M (1987) Correlation of dental amalgam with mercury in brain tissue. J Prosthet Dent 58:704–707

    Article  CAS  PubMed  Google Scholar 

  • Ehmann WD, Markesbery WR, Alauddin M, Hossain TI, Brubaker EH (1986) Brain trace elements in Alzheimer’s disease. Neurotoxicology 7:195–206

    CAS  PubMed  Google Scholar 

  • Ernst RL, Hay JW (1997) Economic research on Alzheimer disease: a review of the Alzheimer. Dis Assoc Disord 11(Suppl 6):135–145

    Google Scholar 

  • Falconer MM, Vaillant A, Reuhl KR, Laferriere N, Brown DL (1994) The molecular basis of microtubule stability in neurons. Neurotoxicology 15:109–122

    CAS  PubMed  Google Scholar 

  • Fung YK, Meade AG, Rack EP et al (1995) Determination of blood mercury concentrations in Alzheimer’s patients. J Toxicol Clin Toxicol 33:243–247

    Article  CAS  PubMed  Google Scholar 

  • Fung YK, Meade AG, Rack EP, Blotcky AJ (1997) Brain mercury in neurodegenerative disorders. J Toxicol Clin Toxicol 35:49–54

    Article  CAS  PubMed  Google Scholar 

  • Grant WB (1997) Dietary Links to Alzheimer’s disease. Alzheimer’s Disease Review 2:42–55

    CAS  Google Scholar 

  • Grant WB (1999) Dietary links to Alzheimer’s disease: 1999 update. J Alzheimer’s Dis 1:197–201

    CAS  Google Scholar 

  • Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer’s disease. J Alzheimers Dis 4:179–189

    PubMed  Google Scholar 

  • Gunnersen D, Haley B (1992) Detection of glutamine synthetase in the cerebrospinal fluid of Alzheimer diseased patients: a potential diagnostic biochemical marker. Proc Natl Acad Sci U S A 89:11949–11953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guzzi G, Grandi M, Cattaneo C (2002) Should amalgam fillings be removed? Lancet 360:2081

    Article  PubMed  Google Scholar 

  • Haley B (2002) The relationship of toxic effects of mercury to exacerbation of the medical condition classified as Alzheimer’s disease. http://www.fda.gov/ohrms/dockets/dailys/02/Sep02/091602/80027dd5.pdf. Accessed 16 May 2004

  • Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203

    Article  CAS  PubMed  Google Scholar 

  • Helmuth L (2002) New therapies. New Alzheimer’s treatments that may ease the mind. Science 297:1260–1262

    Article  CAS  PubMed  Google Scholar 

  • Helmuth L (2003) Detangling Alzheimer’s disease. New insights into the biological bases of the most common cause of dementia are pointing to better diagnostics and possible therapeutics. Sci Aging Knowledge Environ 2003:oa2

    Google Scholar 

  • Henderson VW (2000) Oestrogens and dementia. Novartis Found Symp 230:254–265

    Article  CAS  PubMed  Google Scholar 

  • Henderson VW, Paganini-Hill A, Emanuel CK, Dunn ME, Buckwalter JG (1994) Estrogen replacement therapy in older women. Comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 51:896–900

    Article  CAS  PubMed  Google Scholar 

  • Hendrie HC, Osuntokun BO, Hall KS et al (1995) Prevalence of Alzheimer’s disease and dementia in two communities: Nigerian Africans and African Americans. Am J Psychiatry 152:1485–1492

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2003) General aspects of neurodegeneration. J Neural Transm Suppl 65:101–144

    Article  PubMed  Google Scholar 

  • Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 42:776–782

    Article  CAS  PubMed  Google Scholar 

  • Leong CC, Syed NI, Lorscheider FL (2001) Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuroreport 12:733–737

    Article  CAS  PubMed  Google Scholar 

  • Limson J, Nyokong T, Daya S (1998) The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study. J Pineal Res 24:15–21

    Article  CAS  PubMed  Google Scholar 

  • Lorscheider FL, Vimy MJ, Summers AO (1995) Mercury exposure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB J 9:504–508

    CAS  PubMed  Google Scholar 

  • Lund JP, Mojon P, Pho M, Feine JS (2003) Alzheimer’s disease and edentulism. Age Ageing 32:228–229

    Article  PubMed  Google Scholar 

  • Matsuoka M, Wispriyono B, Iryo Y, Igisu H (2000) Mercury chloride activates c-Jun N-terminal kinase and induces c-jun expression in LLC-PK1 cells. Toxicol Sci 53:361–368

    Article  CAS  PubMed  Google Scholar 

  • McLachlan DR, Smith WL, Kruck TP (1993) Desferrioxamine and Alzheimer’s disease: video home behavior assessment of clinical course and measures of brain aluminum. Ther Drug Monit 15:602–607

    Article  CAS  PubMed  Google Scholar 

  • Morris MC, Evans DA, Bienias JL et al (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60:940–946

    Article  PubMed  Google Scholar 

  • Mutter J, Naumann J, Sadaghiani C, Walach H, Drasch G (2004) Amalgam studies: disregarding basic principles of mercury toxicity. Int J Hyg Environ Health 205(8):435

    Google Scholar 

  • Nylander M (1986) Mercury in pituitary glands of dentists. Lancet 1:442

    Article  CAS  PubMed  Google Scholar 

  • Nylander M, Weiner J (1991) Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population. Br J Ind Med 48:729–734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nylander M, Friberg L, Lind B (1987) Mercury concentrations in the human brain and kidneys in relation to exposure from dental amalgam fillings. Swed Dent J 11:179–187

    CAS  PubMed  Google Scholar 

  • Olivieri G, Brack C, Muller-Spahn F, Stahelin HB, Herrmann M, Renard P, Brockhaus M, Hock C (2000) Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 74:231–236

    Article  CAS  PubMed  Google Scholar 

  • Olivieri G, Hess C, Savaskan E et al (2001) Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. J Pineal Res 31:320–325

    Article  CAS  PubMed  Google Scholar 

  • Olivieri G, Novakovic M, Savaskan E et al (2002) The effects of beta-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience 113:849–855

    Article  CAS  PubMed  Google Scholar 

  • Osuntokun BO, Hendrie HC, Ogunniyi AO et al (1992) Cross-cultural studies in Alzheimer’s disease. Ethn Dis 2:352–357

    CAS  PubMed  Google Scholar 

  • Paganini-Hill A, Henderson VW (1994) Estrogen deficiency and risk of Alzheimer’s disease in women. Am J Epidemiol 140:256–261

    CAS  PubMed  Google Scholar 

  • Palkiewicz P, Zwiers H, Lorscheider FL (1994) ADP-ribosylation of brain neuronal proteins is altered by in vitro and in vivo exposure to inorganic mercury. J Neurochem 62:2049–2052

    Article  CAS  PubMed  Google Scholar 

  • Pendergrass JC, Haley BE (1995) Mercury-EDTA complex specifically blocks brain beta-tubulin- GTP interactions: similarity to observations in Alzheimer’s disease. In: Friberg LT, Scrauzer GN (eds) Status quo and perspectives of amalgam and other dental materials. Georg Thieme Verlag, Stuttgart, pp 98–105

    Google Scholar 

  • Pendergrass JC, Haley BE (1996) Inhibition of brain tubulin-guanosine 5′-triphosphate interactions by mercury: similarity to observations in Alzheimer’s diseased brain. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 34. Marcel Dekker, New York, pp 461–478

    Google Scholar 

  • Pendergrass JC, Haley BE, Vimy MJ, Winfield SA, Lorscheider FL (1997) Mercury vapor inhalation inhibits binding of GTP to tubulin in rat brain: similarity to a molecular lesion in Alzheimer’s diseased brain. Neurotoxicology 18:315–324

    CAS  PubMed  Google Scholar 

  • Rajanna B, Chetty CS, Rajanna S, Hall E, Fail S, Yallapragada PR (1995) Modulation of protein kinase C by heavy metals. Toxicol Lett 81:197–203

    Article  CAS  PubMed  Google Scholar 

  • Rapp SR, Espeland MA, Shumaker SA et al (2003) Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the women’s health initiative memory study: a randomized controlled trial. JAMA 289:2663–2672

    Article  CAS  PubMed  Google Scholar 

  • Robinson SR (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease. J Neurosci Res 66:972–980

    Article  CAS  PubMed  Google Scholar 

  • Sassin I, Schultz C, Thal DR et al (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol 100:259–269

    Article  CAS  PubMed  Google Scholar 

  • Saxe SR, Wekstein MW, Kryscio RJ et al (1999) Alzheimer’s disease, dental amalgam and mercury. J Am Dent Assoc 130:191–199

    Article  CAS  PubMed  Google Scholar 

  • Schober SE, Sinks TH, Jones RL et al (2003) Blood mercury levels in US children and women of childbearing age, 1999–2000. JAMA 289:1667–1674

    Article  CAS  PubMed  Google Scholar 

  • Sierra EM, Tiffany-Castiglioni E (1991) Reduction of glutamine synthetase activity in astroglia exposed in culture to low levels of inorganic lead. Toxicology 65:295–304

    Article  CAS  PubMed  Google Scholar 

  • Thompson CM, Markesbery WR, Ehmann WD, Mao YX, Vance DE (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9:1–7

    CAS  PubMed  Google Scholar 

  • Tumani H, Shen G, Peter JB, Bruck W (1999) Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch Neurol 56:1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Vance DE, Ehmann WD, Markesbery WR (1988) Trace element imbalances in hair and nails of Alzheimer’s disease patients. Neurotoxicology 9:197–208

    CAS  PubMed  Google Scholar 

  • Vance DE, Ehmann WD, Markesbery WR (1990) A search for longitudinal variations in trace element levels in nails of Alzheimer’s disease patients. Biol Trace Elem Res 26–27:461–470

    Article  PubMed  Google Scholar 

  • Weiner JA, Nylander M (1993) The relationship between mercury concentration in human organs and different predictor variables. Sci Total Environ 138:101–115

    Article  CAS  PubMed  Google Scholar 

  • Wenk GL (2003) Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 64:7–10

    PubMed  Google Scholar 

  • Wenstrup D, Ehmann WD, Markesbery WR (1990) Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease. Brain Res 533:125–131

    Article  CAS  PubMed  Google Scholar 

  • White AR, Huang X, Jobling MF et al (2001) Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem 76:1509–1520

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Nabi, S. (2014). Methylmercury and Alzheimer’s Disease. In: Toxic Effects of Mercury. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1922-4_26

Download citation

Publish with us

Policies and ethics