Skip to main content

Micronucleus Test (MNT)

  • Chapter
  • First Online:
Toxic Effects of Mercury
  • 1358 Accesses

Abstract

Mercury, one of the most widely diffused and hazardous organ-specific environmental contaminants, exists in a wide variety of physical and chemical states, each of which with unique characteristics of target organ specificity (Aleo et al. 2002). In nature the different forms of mercury include the metallic form, inorganic compounds, as well as alkyl, alkoxy, and aryl mercury compounds. Once introduced into the environment, mercury compounds can undergo a wide variety of transformations. In sediments, inorganic mercury (HgCl2) may be converted into methyl (CH3HgCl) and dimethyl (CH3CH2HgCl) forms by methanogenic bacteria. This biotransformation constitutes a serious environmental risk, given that CH3HgCl is the most toxic of the mercury compounds and accumulates in the aquatic food chain, eventually reaching human diets (Tchounwou et al. 2003). CH3HgCl has been an environmental concern to public health and regulatory agencies for over 50 years because of its neurotoxicity. Its association with nervous system toxicity in adults and infants near Minamata Bay, Japan, in the 1950s initiated environmental health research inquiries that continue to this day (Faustman et al. 2002). The three modern “faces” of mercury are our perceptions of risk from the exposure of billions of people to CH3HgCl in fish, mercury vapor from amalgam tooth fillings, and CH3CH2HgCl in the form of thimerosal added as an antiseptic to widely used vaccines (Clarkson 2002). Mercury genotoxicity has been usually attributed to its ability to react with the sulfhydryl groups of tubulin, impairing spindle function and leading to chromosomal aberrations and polyploidy (De Flora et al. 1994). Another important mechanism of mercury genotoxicity is its ability to produce free radicals that can cause DNA damage (Schurz et al. 2000; Ehrenstein et al. 2002). In vivo studies have demonstrated a clastogenic effect of mercury on people exposed to this element in their working environment or through the consumption of contaminated food or sometimes accidentally. Increased numbers of chromosome alterations and micronuclei have been reported in people who consume contaminated fish (Amorim et al. 2000; Franchi et al. 1994) and in miners and workers of explosive factories (Al-Sabti et al. 1992; Anwar and Gabal 1991). Negative results were also obtained in some cases (Hansteen et al. 1993; Mabille et al. 1984), demonstrating that cytogenetic monitoring of peripheral blood lymphocytes in individuals exposed to mercury from different sources may not be completely specific (De Flora et al. 1994). The effects of CH3HgCl contamination have been studied in an increasing way since the outbreaks in Japan and Iraq. Many of these studies had their focus on the neurological effects of CH3HgCl exposure in adult animals and used high doses of this compound (1,900–30,000 ppb = μg/L) to obtain its most severe effects (National Research Council 2000). Most of the in vitro studies with lymphocytes also used high doses (250–6,250 μg/L) of mercury compounds in order to evaluate its clastogenic effects (Ogura et al. 1996; Betti et al. 1993, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschbacher HU (1986) Rates of micronuclei induction in different mouse strains. Mutat Res 164:109–115

    Article  CAS  PubMed  Google Scholar 

  • Aleo MF, Morandini F, Benttoni F, Tanganelli S, Vezzola A, Giuliani R, Steimberg N, Boniotti J, Bertasi B, Losio N, Apostoli P, Mazzoleni G (2002) In vitro study of the nephrotoxic mechanism of mercuric chloride. Med Lav 93:267–278

    CAS  PubMed  Google Scholar 

  • Al-Sabti K, Lloyd DC, Edwards AA, Stegnar P (1992) A survey of lymphocyte chromosomal damage in Slovenian workers exposed to occupational clastogens. Mutat Res 280:215–223

    Article  CAS  PubMed  Google Scholar 

  • Al-Sabti K (1995) An in vitro binucleated blocked hepatic cell technique for genotoxicity testing in fish. Mutat Res 335:109–120

    Article  CAS  PubMed  Google Scholar 

  • Amorim AIM, Mergler D, Bahia MO, Dubeau H, Miranda D, Lebel J, Burbano RR, Lucotte M (2000) Cytogenetic damage related to low levels of methylmercury contamination in the Brazilian Amazon. An Acad Bras Cienc 72:497–507

    Article  CAS  PubMed  Google Scholar 

  • Anwar WA, Gabal MS (1991) Cytogenetic study in workers occupationally exposed to mercury fulminate. Mutagenesis 6:189–192

    Article  CAS  PubMed  Google Scholar 

  • Ateeq B, Abul Farah M, Niamat A, Ahmad W (2002) Induction of micronuclei and erythrocyte alterations in the Cat fish Clarias batrachus by 2, 4 dichlorophenoxyacetic acid and butachlor. Mutat Res 518:135–144

    Article  CAS  PubMed  Google Scholar 

  • Ayllon F, Garcia-Vasquez EG (2000) Introduction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie poecilia latipinna: an assessment of the fish micronucleus test. Mutat Res 467:177–186

    Article  CAS  PubMed  Google Scholar 

  • Betti C, Davini T, Barale R (1992) Genotoxic activity of methyl mercury chloride and dimethyl mercury in human lymphocytes. Mutat Res 281:255–260

    Article  CAS  PubMed  Google Scholar 

  • Betti C, Barale R, Pool-Zobel BL (1993) Comparative studies on cytotoxic and genotoxic effects of two organic mercury compounds in lymphocytes and gastric mucosa cells of Sprague-Dawley rats. Environ Mol Mutagen 22:172–180

    Article  CAS  PubMed  Google Scholar 

  • Bhilwade HN, Chaubey RC, Chauhan PS (2004) Gamma Ray induced bone marrow micronucleated erythrocytes in seven strains of mouse. Mutat Res 560:19–26

    Article  CAS  PubMed  Google Scholar 

  • Bonacker D, Stoiber T, Wang M, Bohm KJ, Prots I, Unger E, Their R, Bolt HM, Degen GH (2004) Genotoxicity of inorganic mercury salts based on disturbed microtubule function. Arch Toxicol 78:575–583

    Article  CAS  PubMed  Google Scholar 

  • Catena C, Conti D, Villani P, Nastasi R, Archilei R, Righi E (1994) Micronuclei and 3AB in human and canine lymphocytes after in vitro X-irradiation. Mutat Res 312:1–8

    Article  CAS  PubMed  Google Scholar 

  • Chorvatovicova D, Kovacikova Z (1993) Transplacental effect of organomercurial. 1. Micronucleus test. Biol Bratislava 48:271–274

    CAS  Google Scholar 

  • Clarkson RW (2002) The three modern faces of mercury. Environ Health Perspect 110:11–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collaborative Study Group for the Micronucleus Test (CSGMT) (1988) Strain difference in the micronucleus test. Mutat Res 204:307–316

    Article  Google Scholar 

  • Cristaldi M, Ieradi LA, Udroiu I, Zilli R (2004) Comparative evaluation of background micronucleus frequencies in domestic mammals. Mutat Res 559:1–9

    Article  CAS  PubMed  Google Scholar 

  • Da Silva J, de Freitas TRO, Heuser V, Marinho JR, Bittencourt F, Cerski CTS, Kliemann LM, Erdtmann B (2000a) Effects of chronic exposure to coal in wild rodent (Ctenomys torquatus) evaluated by multiple methods and tissues. Mutat Res 470:35–39

    Article  Google Scholar 

  • Da Silva J, de Freitas TRO, Heuser V, Marinho JR, Erdtman B (2000b) Genotoxicity biomonitoring in coal regions using wild rodent Ctenomys torquatus by comet assay and micronucleus test. Environ Mol Mutagen 35:270–278

    Article  PubMed  Google Scholar 

  • De Flora S, Benniceli C, Bagnasco M (1994) Genotoxicity of mercury compounds. A review. Mutat Res 31:57–79

    Article  Google Scholar 

  • Ehrenstein C, Shu P, Wickenheiser EB, Hirner AV, Dolfen M, Emons H, Obe G (2002) Methyl mercury uptake and associations with the induction of chromosomal aberrations in Chinese hamster ovary (CHO) cells. Chem Biol Interact 141:259–274

    Article  CAS  PubMed  Google Scholar 

  • Environmental Protection Agency (EPA) (1998) Health effects test guidelines OPPTS 870.5395. Mammalian erythrocyte micronucleus test. National Service Center for Environmental Publications (NSCEP), Washington, DC, pp 1–12

    Google Scholar 

  • Faustman EM, Ponce RA, Ou YC, Mendonza MA, Lewandowski R, Kavanagh T (2002) Investigations of methylmercury-induced alterations in neurogenesis. Environ Health Perspect 110:859–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fenech M, Neville S, Rinaldi J (1994) Sex is an important variable affecting spontaneous micronucleus frequency in cytokinesis-blocked lymphocytes. Mutat Res 313:203–207

    Article  CAS  PubMed  Google Scholar 

  • Fenech M, Chang M, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75

    Article  CAS  PubMed  Google Scholar 

  • Franchi E, Loprieno G, Ballardin M, Petrozzi L, Migliore L (1994) Cytogenetic monitoring of fishermen with environmental mercury exposure. Mutat Res 320:23–29

    Article  CAS  PubMed  Google Scholar 

  • Gimmler-Luz MC, Rodrigues de Andrade HH, Tozzo Marafon-Bayer A (1997) Benzidine and diaminobenzidine induced micronuclei in mice after intraperitoneal and oral single or multiple treatments. Braz J Genet 20:247–252

    Article  CAS  Google Scholar 

  • Hamada S, Yamasaki K, Nakanishi S, Omori T, Serikawa T, Hayashi M (2001) Evaluation of general suitability of the rat for the micronucleus assay: the effect of cyclophosphamide in 14 rats. Mutat Res 495:127–134

    Article  CAS  PubMed  Google Scholar 

  • Hansteen H, Ellingsen DG, Clausen KO, Kjuus H (1993) Chromosome aberrations in chloralkali workers previously exposed to mercury vapour. Scand J Work Environ Health 19:375–381

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Sofuni T, Ishidate M (1982) High sensitivity in micronucleus induction of a mouse strain (MS). Mutat Res 105:253–256

    Article  CAS  PubMed  Google Scholar 

  • Kovachikova Z, Chorvatovicova D (1993) Transplacental effect of organomercurial. 2. Alanine and aspartate aminotransferase activities in liver. Biol Bratislava 48:275–277

    Google Scholar 

  • Lynch A, Parry J (1993) The cytochalasin-B micronucleus/kinetochore assay in vitro: Studies with 10 suspected aneugens. Mutat Res 287:71–86

    Article  CAS  PubMed  Google Scholar 

  • Mabille V, Roels H, Jacquet P, Léonard A, Lauweris R (1984) Cytogenetic examination of leucocytes of workers exposed to mercury vapour. Int Arch Occup Environ Health 53:257–260

    Article  CAS  PubMed  Google Scholar 

  • Mentieres S, Marzin D (2004) Apoptosis may contribute to false positive results in the in vitro micronucleus test performed in extreme osmolality, ionic strength and pH conditions. Mutat Res 560:101–118

    Article  Google Scholar 

  • Mudry MD, Carballo M, Labal de Vinuesa ML, Gonzalez Cid M, Larripa I (1994) Mutagenic bioassay of certain pharmacological drugs: III. Metronidazole (MTZ). Mutat Res 305:127–132

    Article  CAS  PubMed  Google Scholar 

  • National Research Council, Committee on the Toxicological Effects of Methylmercury (2000) Toxicological effects of methylmercury. National Academy Press, Washington, DC

    Google Scholar 

  • Nepomuceno JC, Ferrari I, Spano MA, Centeno AJ (1997) Detection of micronuclei in peripheral erythrocytes of cyprinus carpio exposed to metallic mercury. Environ Mol Mutagen 30:293–297

    Article  CAS  PubMed  Google Scholar 

  • Ogura H, Takeuchi T, Morimoto K (1996) A comparison of the 8-hydroxydeoxyguanosine, chromosome aberrations and micronucleus techniques for the assessment of the genotoxicity of mercury compounds in human blood lymphocytes. Mutat Res 340:175–182

    Article  CAS  PubMed  Google Scholar 

  • Organization for Economic Operation and Development (OEOD) (1997) Guidelines for testing of chemicals n. 474. Mammalian erythrocyte micronucleus test. OEOD, Paris, pp 1–10

    Google Scholar 

  • Queiroz MLS, Bincoletto C, Quadros MR, De Capitani EM (1999) Presence of micronuclei in lymphocytes of mercury exposed workers. Immunophamacol Immunotoxicol 21:141–150

    Article  CAS  Google Scholar 

  • Recio L, Bauer A, Faiola B (2005) Use of genetically modified mouse models to assess pathways of benzene-induced bone marrow cytotoxicity and genotoxicity. Chem Biol Interact 153–154:159–164

    Article  PubMed  Google Scholar 

  • Salamone MF, Mavourin KH (1994) Bone marrow micronucleus assay: a review of the mouse stocks used and their published mean spontaneous micronucleus frequencies. Environ Mol Mutagen 23:239–273

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Galan S, Linde AR, Ayllon F, Garcia-Vazquez E (2001) Induction of micronuclei in eel (Anguilla anguilla) by heavy metals. Ecotoxicol Environ Safe 49:139–143

    Article  CAS  Google Scholar 

  • Sato S, Tomita I (2001) Short-term screening method for the prediction of carcinogenicity or chemical substances: current status and problems of an in vivo rodent micronucleus assay. J Health Sci 47:1–8

    Article  CAS  Google Scholar 

  • Sato S, Kitajima H, Konishi S, Takizawa H, Inui N (1987) Mouse strain differences in the induction of micronuclei by polycyclic aromatic hydrocarbons. Mutat Res 192:185–189

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Tazikawa H, Inui N (1993) Mouse strain differences in induction of micronuclei by base analogues and nucleosides. Mutat Res 301:45–49

    Article  CAS  PubMed  Google Scholar 

  • Schmid W (1975) The micronucleus test. Mutat Res 31:9–15

    Article  CAS  PubMed  Google Scholar 

  • Schurz F, Sabater-Vilar M, Fink-Gremmels J (2000) Mutagenicity of mercury chloride and mechanisms of cellular defence: the role of metal-binding proteins. Mutagenesis 15:525–530

    Article  CAS  PubMed  Google Scholar 

  • Simula AP, Priestly BG (1992) Species differences in the genotoxicity of cyclophosphamide and styrene in three in vivo assays. Mutat Res 271:49–58

    Article  CAS  PubMed  Google Scholar 

  • Stoiber T, Bonacker D, Bohm KJ, Bolt HM, Their R, Degen GH, Unger E (2004) Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury (II). Mutat Res 563:97–106

    Article  CAS  PubMed  Google Scholar 

  • Styles JA, Richardson CR, Burlinson B (1983) A comparison of incidence of micronuclei in blood and bone marrow in 3 strains of mouse dosed with cyclophosphamide or hexamethylphosphoramide (HMPA). Mutat Res 122:143–147

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    Article  CAS  PubMed  Google Scholar 

  • Their R, Bonacker D, Stoiber T, Bohm KJ, Wang M, Unger E, Bolt HM, Degen G (2003) Interaction of metal salts with cytoskeletal motor protein systems. Toxicol Lett 140–141:75–81

    Article  Google Scholar 

  • Vanparys P, Vermeiren F, Sysmans M, Temmerman R (1990) The micronucleus assay as a test for the detection of aneugenic activity. Mutat Res 244:95–103

    Article  CAS  PubMed  Google Scholar 

  • Zuniga-Gonzalez G, Torres-Bugarín O, Luna-Aguirre J, Gonzalez-Rodríguez A, Zamora-Perez A, Gomez-Meda BC, Ventura-Aguilar AJ, Ramos-Ibarra ML, Ramos-Mora A, Ortiz GG, Gallegos-Arreola MP (2000) Spontaneous micronuclei in peripheral blood erythrocytes from 54 animal species (mammals, reptiles and birds): part two. Mutat Res 467:99–103

    Article  CAS  PubMed  Google Scholar 

  • Zuniga-Gonzalez G, Torres-Bugarin O, Ramos-Ibarra ML, Zamora-Perez A, Gomez-Meda BC, Ventura-Aguilar AJ, Ramos-Mora A, Ortiz GG, Alvarez-Moya C, Gonzalez-Rodriguez A, Luna-Aguirre J, Gallegos-Arreola MP (2001a) Variation of micronucleated erythrocytes in peripheral blood of Sciurus aureogaster in relation to age: an increment of micronucleated polychromatic erythrocytes after the administration of colchicine. Environ Mol Mutagen 37:173–177

    Article  CAS  PubMed  Google Scholar 

  • Zuniga-Gonzalez G, Torres-Bugarin O, Zamora-Perez A, Gomez-Meda BC, Ramos-Ibarra ML, Martinez-Gonzalez S, Gonzalez-Rodriguez A, Luna-Aguirre J, Ramos-Mora A, Ontiveros-Lira D, Gallegos-Arreola MP (2001b) Differences in the number of micronucleated erythrocytes among young and adult animals including humans. Spontaneous micronuclei in 43 species. Mutat Res 494:161–167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Nabi, S. (2014). Micronucleus Test (MNT). In: Toxic Effects of Mercury. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1922-4_23

Download citation

Publish with us

Policies and ethics