Skip to main content

Endogenous Antioxidants

  • Chapter
  • First Online:
Toxic Effects of Mercury
  • 1507 Accesses

Abstract

An antioxidant is a molecule that inhibits the oxidation of other molecules. Oxidation is a chemical reaction that transfers electrons or hydrogen from a substance to an oxidizing agent. Oxidation reactions can produce free radicals. In turn, these radicals can start chain reactions. When the chain reaction occurs in a cell, it can cause damage or death to the cell. Antioxidants terminate these chain reactions by removing free radical intermediates and inhibit other oxidation reactions. They do this by being oxidized themselves, so antioxidants are often reducing agents such as thiols, ascorbic acid, or polyphenols (Sies Helmut 1997). Antioxidants are vitamins, minerals, enzymes, or plant-derived nutrients called phytonutrients, found in food. They do what their name implies: antioxidation. Antioxidant means “against oxidation.” Antioxidants work to protect lipids from peroxidation by radicals. Antioxidants are effective because they are willing to give up their own electrons to free radicals. When a free radical gains the electron from an antioxidant, it no longer needs to attack the cell, and the chain reaction of oxidation is broken (Dekkers et al. 1996). After donating an electron, an antioxidant becomes a free radical by definition. Antioxidants in this state are not harmful because they have the ability to accommodate the change in electrons without becoming reactive. The human body has an elaborate antioxidant defense system. Antioxidants are manufactured within the body and can also be extracted from the food humans eat such as fruits, vegetables, seeds, nuts, meats, and oil. There are two lines of antioxidant defense within the cell. The first line, found in the fat-soluble cellular membrane, consists of vitamin E, beta-carotene, and coenzyme Q (Kaczmarski et al. 1999). Of these, vitamin E is considered the most potent chain-breaking antioxidant within the membrane of the cell. Inside the cell, water-soluble antioxidant scavengers are present. These include vitamin C, glutathione peroxidase, superoxide dismutase (SOD), and catalase (Dekkers et al. 1996).

Antioxidants are compounds already in your body, but you need more than what the body produces

(Joe Vinson)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ariza ME, Bijur GN, Williams MV (1998) Lead and mercury metagenesis: role of H2O2, superoxide dismutase, and xanthine oxidase. Environ Mol Mutagen 31:352–361

    Article  CAS  PubMed  Google Scholar 

  • Baillie JK, Thompson AAR, Irving JB, Bates MGD, Sutherland AI, MacNee W, Maxwell SRJ, Webb DJ (2009) Oral antioxidant supplementation does not prevent acute mountain sickness: double blind randomized placebo-controlled trial. QJM 102(5):341–348

    Article  CAS  PubMed  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297(8):842–857

    Article  CAS  PubMed  Google Scholar 

  • Boon EM, Downs A, Marcey D (2007) Catalase: H2O2: H2O2 oxidoreductase. Catalase structural tutorial text

    Google Scholar 

  • BRENDA (2009) The comprehensive enzyme information system. Department of Bioinformatics and Biochemistry, Technical University of Braunschweig, Germany

    Google Scholar 

  • Carvalho MC, Franco JL, Ghizonia H, Kobusa K, Nazaria EM, Rocha JBT, Nogueira CW, Dafred AL, Mullera YMR, Farina M (2007) Effects of 2, 3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice. Toxicology 239:195–203

    Article  CAS  PubMed  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TW (1997) The toxicity of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  CAS  PubMed  Google Scholar 

  • Dabelstein W, Reglitzky A, Schütze A, Reders K. (2007) Automotive fuels. In: Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH, Weinheim.

    Google Scholar 

  • Dekkers JC, Von Doormen LJP, Han CGK (1996) The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med 21:213–238

    Article  CAS  PubMed  Google Scholar 

  • Gaetani G, Ferraris A, Rolfo M, Mangerini R, Arena S, Kirkman H (1996) Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 87:1595–1599

    CAS  PubMed  Google Scholar 

  • Goodsell DS (2004) Catalase. Molecule of the month. RCSB Protein Data Bank

    Google Scholar 

  • Grotto D, Barcelos GRM, Valentini J, Antunes MGA, Angeli JPA, Garcia SC, Barbosa F (2009) Low levels of methylmercury induce DNA damage in rats: protective effects of selenium. Arch Toxicol 83:249–254

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Xiong Y, Ma W, Spector A, Ho D (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279:32804–32812

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Atkinson A, Thompson SJ, Khan AT (1999) Accumulation of mercury and its effect on antioxidant enzymes in brain, liver, and kidneys of mice. J Environ Sci Health B 34:645–660

    Article  CAS  PubMed  Google Scholar 

  • Jha P, Flather M, Lonn E, Farkouh M, Yusuf S (1995) The antioxidant vitamins and cardiovascular disease: a critical review of epidemiologic and clinical trial data. Ann Intern Med 123(11):860–872

    Article  CAS  PubMed  Google Scholar 

  • Jina X, Loka E, Bondya G, Caldwella D, Muellera R, Kapala K, Cheryl A, Taylora M, Kubowc S, Mehtaa R, Chan HM (2007) Modulating effects of dietary fats on methylmercury toxicity and distribution in rats. Toxicology 230:22–44

    Article  Google Scholar 

  • Kaczmarski M, Wojicicki J, Samochowiee L, Dutkiewicz T, Sych Z (1999) The influence of exogenous antioxidants and physical exercise on some parameters associated with production and removal of free radicals. Pharmazie 54:303–306

    CAS  PubMed  Google Scholar 

  • Lund BO, Miler DM, Woods JS (1991) Mercury-induced H2O2 formation and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 42:181–187

    Article  Google Scholar 

  • Maehly A, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    Article  CAS  PubMed  Google Scholar 

  • Pastore A, Piemonte F, Locatelli M, Lo Russo A, Gaeta LM, Tozzi G, Federici G (2003) Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem 47:1467–1469

    Google Scholar 

  • Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503

    Article  CAS  PubMed  Google Scholar 

  • Sarafian TA (1999) Methylmercury-induced generation of free radical: biological implications. Met Ions Biol Syst 36:415–444

    CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    CAS  PubMed  Google Scholar 

  • Stringari J, Nunes AKC, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JBT, Aschner M, Farina M (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227:147–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toner K, Sojka G, Ellis R (2007) A quantitative enzyme study; CATALASE. bucknell.edu

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Nabi, S. (2014). Endogenous Antioxidants. In: Toxic Effects of Mercury. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1922-4_15

Download citation

Publish with us

Policies and ethics