Passive Middle Ear Implants



Passive middle ear implants, by definition, reconstruct the disrupted or fixed ossicular chain. A prerequisite for an optimal sound transmission system is an aerated middle ear space and a closed tympanic membrane, both of which are passive conditions, and a normal functioning inner ear as the active part of the system.


Tympanic Membrane Eustachian Tube Chronic Suppurative Otitis Medium Ossicular Chain Foreign Body Giant Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wullstein H. Funktionelle Operationen im Mittelohr mit Hilfe des freien Spalthaut-Transplantates. Arch Ohren Nasen Kehlkopfheilkd. 1952;161:422–35.Google Scholar
  2. 2.
    Schwager K. Mittelohrprothesen und das biologische Umfeld. Biomaterialien Interdisziplinäre Zeitschrift für Funktions-Werkstoffe im Hart- und Weichgewebe. 2000;1:42–7.Google Scholar
  3. 3.
    Beutner D, Hüttenbrink KB. Passive und aktive Mittelohrimplantate. Laryngo-Rhino-Otol. 2009;88:32–47.Google Scholar
  4. 4.
    Beutner D, Hüttenbrink KB. Passive and active ear implants. In: Pau HW, editor. Technology for quality of life – implants and biomaterials in otorhinolaryngology. Mönchengladbach: Rheinware; 2009.Google Scholar
  5. 5.
    Geyer G. Implantate in der Mittelohrchirurgie. Eur Arch Otolaryngol Suppl. 1992;I:185–221.Google Scholar
  6. 6.
    Dost P, Jahnke K. Biomaterials in reconstructive middle ear surgery. In: Jahnke K, editor. Middle ear surgery. Stuttgart: Thieme; 2004.Google Scholar
  7. 7.
    Dost P. Biomaterialien in der rekonstruktiven Mittelohrchirurgie. Laryngol Rhinol Otol. 2000;79:53–72.Google Scholar
  8. 8.
    Geyer G. Materialien zur Rekonstruktion des Schalleitungsapparats. HNO. 1999;47(2):77–91.PubMedGoogle Scholar
  9. 9.
    Jaryszak EM, Sampson EM, Antonelli PJ. Biofilm formation by Pseudomonas aeruginosa on ossicular reconstruction prostheses. Am J Otol. 2009;30:367–70.Google Scholar
  10. 10.
    Brook I. Role of anaerobic bacteria in chronic otitis media and cholesteatoma. Int J Pediatr Otorhinolaryngol. 1995;31:153–7.PubMedGoogle Scholar
  11. 11.
    Wang EW, Jun JY, Pashia ME, et al. Otopathogenic Pseudomonas aeruginosa strains as competent biofilm formers. Arch Otolaryngol Head Neck Surg. 2005;131:983–9.PubMedGoogle Scholar
  12. 12.
    Gross U, Schmitz HJ, Kinne R, et al. Tissue or cell culture versus in vivo testing of surface-reactive biomaterials. In: Pizzoferrato A, Marchetti PG, Raviglioli A, et al., editors. Advances in biomaterials 7, biomaterials and clinical applications. Amsterdam: Elsevier; 1987. p. 547–56.Google Scholar
  13. 13.
    Jahnke K. Fortschritte der Mikrochirurgie des Mittelohres. HNO. 1987;35:1–13.PubMedGoogle Scholar
  14. 14.
    Takahashi H, Hasebe S, Sudo M. State of Eustachian tube function in tympanoplasty. In: Alper CM, Bluestone CD, Casselbrant ML, editors. Advanced therapy of otitis media. Hamilton: BC Decker; 2004.Google Scholar
  15. 15.
    Dornhoffer JL, Leuwer R, Schwager K, et al. A practical guide to the Eustachian tube. Berlin: Springer; 2014.Google Scholar
  16. 16.
    Ockermann R, Reineke U, Upile T, et al. Balloon dilatation eustachian tuboplasty: a clinical study. Laryngoscope. 2010;120:1411–6.PubMedGoogle Scholar
  17. 17.
    Poe DS, Silvola J, Pyykko I. Balloon dilation of the cartilaginous Eustachian tube. Otolaryngol Head Neck Surg. 2011;144:563–9.PubMedGoogle Scholar
  18. 18.
    Sudhoff H, Schröder S, Reineke U, et al. Therapy of chronic obstructive eustachian tube dysfunction: evolution of applied therapies. HNO. 2013;61:477–82.PubMedGoogle Scholar
  19. 19.
    Helms J. Die Wiederherstellung der Schalleitungskette. HNO. 1983;31:37–44.PubMedGoogle Scholar
  20. 20.
    Helms J. Moderne Aspekte der Tympanoplastik. Laryng Rhinol Otol. 1995;74:465–7.Google Scholar
  21. 21.
    Dornhoffer JL. Cartilage tympanoplasty: indications, techniques, and outcomes in A 1,000-patient series. Laryngoscope. 2003;113:1844–56.PubMedGoogle Scholar
  22. 22.
    Milewski C. Composite graft tympanoplasty in the treatment of ears with advanced middle ear pathology. Laryngoscope. 1993;103:1352–6.PubMedGoogle Scholar
  23. 23.
    Heermann Jr J, Heermann H, Kopstein E. Fascia and cartilage palisade tympanoplasty. Nine years’ experience. Arch Otolaryngol. 1970;91:228–41.PubMedGoogle Scholar
  24. 24.
    Mürbe D, Zahnert T, Bornitz M, et al. Acoustic properties of different cartilage reconstruction techniques of the tympanic membrane. Laryngoscope. 2002;112(10):1769–76.PubMedGoogle Scholar
  25. 25.
    Zahnert T, Hüttenbrink KB. Fehlermöglichkeiten bei der Ossikelkettenrekonstruktion. HNO. 2005;1:89–102.Google Scholar
  26. 26.
    Decraemer WF, Khanna SM. Three dimensional vibration of the ossicular chain in the cat. In: Tomasini EP, editor. Vibration measurements by laser techniques: advances and applications. SPIE. 01-411; 2000.Google Scholar
  27. 27.
    Dornhoffer JL. Hearing results with the Dornhoffer ossicular replacement prostheses. Laryngoscope. 1998;108:531–6.PubMedGoogle Scholar
  28. 28.
    Roach P, Eglin D, Rohde K, et al. Modern biomaterials: a review – bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18:1263–77.PubMedGoogle Scholar
  29. 29.
    Thull R. Biokompatibilitätsbestimmende Eigenschaften der Grenzfläche. Biomaterialien Interdisziplinäre Zeitschrift für Funktions-Werkstoffe im Hart- und Weichgewebe. 2000;1:6–11.Google Scholar
  30. 30.
    Rößler S, Wolf C, Born R, et al. Biologisierung von Implantatoberflächen. Biomaterialien Interdisziplinäre Zeitschrift für Funktions-Werkstoffe im Hart- und Weichgewebe. 2000;1:32–6.Google Scholar
  31. 31.
    Ehlert N, Mueller PP, Stieve M, et al. Mesoporous silica films as a novel biomaterial: applications in the middle ear. Chem Soc Rev. 2013;42:3847–61.PubMedGoogle Scholar
  32. 32.
    Vogt JC, Brandes G, Ehlert N, et al. Free Bioverit® II implants coated with a nanoporous silica layer in a mouse ear model – a histological study. J Biomater Appl. 2008;24:175.PubMedGoogle Scholar
  33. 33.
    Steinbach E, Hildmann H. Der Wert des autologen Gehörknöchelchengewebes. Zentralblatt Hals-Nasen-Ohrenheilk. 1992/93;142:242.Google Scholar
  34. 34.
    Steinbach E, Karger B, Hildmann H. Zur Verwendung von Knorpeltransplantaten in der Mittelohrchirurgie. Eine histologische Langzeituntersuchung von Knorpelinterponaten. Laryng Rhinol Otol. 1992;71:11–4.Google Scholar
  35. 35.
    Frese KA, Hoppe F. Morphologische Untersuchungen an autologen und homologen Ossikeln nach Langzeitimplantation. Laryngo Rhino Otol. 1996;75:330–4.Google Scholar
  36. 36.
    Dornhoffer JL, Colvin GB, North P. Evidence of residual disease in ossicles of patients undergoing cholesteatoma removal. Acta Otolaryngol (Stockh). 1999;119:89–92.Google Scholar
  37. 37.
    Austin DF. Ossicular reconstruction. Arch Otolaryngol. 1971;94:525–35.PubMedGoogle Scholar
  38. 38.
    Hildmann H, Karger B, Steinbach E. Ossikeltransplantate zur Rekonstruktion der Schallübertragung im Mittelohr. Eine histologische Langzeituntersuchung. Laryng Rhinol Otol. 1992;71:5–10.Google Scholar
  39. 39.
    Dazert S, Helms J. Rekonstruktion des Schalleitungsapparates. HNO. 1993;41:25–6.Google Scholar
  40. 40.
    Hartwein J. Dentinprothesen in der Mittelohrchirurgie. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. v, Band 1: Chirurgie. München: Sympomed; 1996. p. 14–7.Google Scholar
  41. 41.
    Beleites E, Rechenbach G. Implantologie in der Kopf-Hals-Chirurgie – gegenwärtiger stand. In: Ganz H, Schätzle W, editors. HNO Praxis Heute 12. Berlin/Heidelberg: Springer; 1992. p. 169–99.Google Scholar
  42. 42.
    Geyer G, Helms J. Rekonstruktive Operationen an Trommelfell und Gehörknöchelchen. Beitrag in: Helms J, Geyer G: Sanierende Operationen. In: Kopf- und Hals-Chirurgie, hrsg. v. Naumann HH, Helms J, Herberhold C et al. Band 1: Ohr, hrsg. v. Helms J, Jahrsdoerfer R. Stuttgart (u.a.): Thieme; 1996.Google Scholar
  43. 43.
    Treace HT. Biomaterials in ossiculoplasty and history of development of prostheses for ossiculoplasty. Otolaryngol Clin North Am. 1994;27:655–62.PubMedGoogle Scholar
  44. 44.
    Austin DF. Avoiding failures in the restoration of hearing with ossiculoplasty and biocompatible implants. Otolaryngol Clin North Am. 1982;15:763–71.PubMedGoogle Scholar
  45. 45.
    Cousins VC, Jahnke K. Light and electronmicroscopic studies on PolycelTM ossicular replacement prostheses. Clin Otolaryngol. 1987;12:183–9.PubMedGoogle Scholar
  46. 46.
    Gjuric M, Mladina R, Koscak J. Die Plastipore-Prothese im Tierexperiment. Laryng Rhinol Otol. 1987;66:522–5.Google Scholar
  47. 47.
    Kerr AG, Brennan GP, Smyth GDL. Proplast® and Plastipore® in the middle ear. In: Grote JJ, editor. Biomaterials in Otology. Boston: Martinus Nijhoff Publ; 1984. p. 161–8.Google Scholar
  48. 48.
    Frootko NJ. Causes of ossiculoplasty failure using porous polyethylene (Plastipore®) prostheses. In: Grote JJ, editor. Biomaterials in Otology. Boston: Martinus Nijhoff Publ; 1984. p. 169–76.Google Scholar
  49. 49.
    Gerhardt HJ. Die kombinierte Knorpel-Draht-Bindegewebeprothese in der Tympanoplastik. Laryngol Rhinol Otol. 1969;48:227–83.Google Scholar
  50. 50.
    Kerr AG. Six years experience of Plastipore®. Clin Otolaryngol. 1984;9:361–7.PubMedGoogle Scholar
  51. 51.
    Kuijpers W. Behaviour of bioimplants in the middle ear. In: Grote JJ, editor. Biomaterials in otology. Boston: Martinus Nijhoff Publ; 1984. p. 18–28.Google Scholar
  52. 52.
    Makek M, Mattox DE, Schmid S, et al. Histopathology of synthetic ossicular prostheses. In: Transplants and implants in otology, proceedings of the International Symposium 1987. Amsterdam: Kugler & Ghedini Publications; 1988. p. 231–7.Google Scholar
  53. 53.
    Makek M, Mattox DE, Schmid S, et al. Histology of synthetic ossicular prostheses. Arch Otolaryngol. 1988;114:1127–30.Google Scholar
  54. 54.
    Jahnke K. Zur Eignung keramischer Werkstoffe für die rekonstruktive Chirurgie des Gesichtsschädels und des Mittelohres. In: Biomaterialien und Nahtmaterial, hrsg. v. Rettig HM. Berlin (u.a.): Springer; 1984. p. 66–72.Google Scholar
  55. 55.
    Jahnke K. Neue Keramik-Implantate zur Rekonstruktion der Gehörknöchelchenkette. Laryng Rhinol Otol. 1992;71:1–4.Google Scholar
  56. 56.
    Jahnke K, Galic M. Zur Verträglichkeit bioinerter Aluminiumoxidkeramik im Mittelohr. Arch Oto-Rhino-Laryngol. 1980;227:624–7.Google Scholar
  57. 57.
    Jahnke K, Möckel C. Aluminiumoxid-Keramik in der Mittelohrchirurgie. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. v. Band 1: Chirurgie. München: Sympomed; 1996. p. 70–4.Google Scholar
  58. 58.
    Jahnke K, Plester D, Heimke G. Aluminiumoxid-Keramik, ein bioinertes Material für die Mittelohrchirurgie. Arch Oto-Rhino-Laryngol. 1979;223:373–6.Google Scholar
  59. 59.
    Yamamoto E. Aluminum oxide ceramic ossicular replacement prosthesis. Ann Otol Rhinol Laryngol. 1985;94:149–52.PubMedGoogle Scholar
  60. 60.
    Yamamoto E. Long-term observations on ceramic ossicular replacement prosthesis (CORP). Laryngoscope. 1988;98:402–4.PubMedGoogle Scholar
  61. 61.
    Friedberg P, Reck R. Histologische Untersuchungen an Aluminiumoxidkeramik im Kaninchenmittelohr. Laryngol Rhinol Otol. 1983;62:391–3.Google Scholar
  62. 62.
    Klein CPAT, Driessen AA, de Groot K, et al. Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res. 1983;17:769–84.PubMedGoogle Scholar
  63. 63.
    Zöllner C, Büsing CM, Strutz J. TCP-Implantate in der Mittelohrchirurgie. Histologische Ergebnisse, Beurteilung. Laryng Rhinol Otol. 1984;63:220–5.Google Scholar
  64. 64.
    Zöllner C, Büsing CM. How useful is tricalcium phosphate ceramic in the middle ear surgery? Am J Otol. 1986;7:289–93.PubMedGoogle Scholar
  65. 65.
    Zöllner C, Strutz J, Beck C, et al. Verödung des Warzenfortsatzes mit poröser Trikalziumphosphat-Keramik. Laryng Rhinol Otol. 1983;62:106–11.Google Scholar
  66. 66.
    Meyer A, Ergebnisse nach hörverbessernden Operationen mit bioaktiver Glaskeramik. Inaugural-Dissertation, Mainz; 1985.Google Scholar
  67. 67.
    Reck R. Tissue reactions to glass ceramics in the middle ear. Clin Otolaryngol. 1981;6:63–5.PubMedGoogle Scholar
  68. 68.
    Reck R. Bioactive glass ceramic: a new material in tympanoplasty. Laryngoscope. 1983;93:196–9.PubMedGoogle Scholar
  69. 69.
    Reck R, Störkel S, Meyer A. Langzeitergebnisse der Tympanoplastik mit Ceravital-Prothesen im Mittelohr. Laryng Rhinol Otol. 1987;66:373–6.Google Scholar
  70. 70.
    Reck R, Störkel S, Meyer A. Bioactive glass-ceramic in middle ear surgery. Ann N Y Acad Sci. 1988;523:100–6.PubMedGoogle Scholar
  71. 71.
    Beleites E, Gudziol H, Höland W. Maschinell bearbeitbare Glaskeramik für die Kopf-Hals-Chirurgie. HNO-Praxis. 1988;13:121–5.Google Scholar
  72. 72.
    Jahnke K, Schmidt C. Histological studies on the suitability of Macor-ceramic middle ear implants. In: Grote JJ, editor. Biomaterials in otology. Boston: Martinus Nijhoff Publishers; 1984.Google Scholar
  73. 73.
    Grote JJ. Der Einsatz von Calciumphosphatkeramik in der rekonstruktiven Chirurgie des Mittelohres und der Schädelbasis. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. v. Band 1: Chirurgie. München: Sympomed; 1996. p. 79–80.Google Scholar
  74. 74.
    van Blitterswijk CA, Kuijpers W, Daems WT, et al. Epithelial reactions to hydroxyapatite. Acta Otolaryngol. 1986;101:231–41.PubMedGoogle Scholar
  75. 75.
    Ducheyne P, Radin S, Cuckler JM. Bioactive ceramic coatings on metal: structureproperty relationships of surface and interfaces. In: Oonishi H, Aoki H, Sawai K, editors. Bioceramics. Tokyo: Ishiyaku Euro America; 1989. p. 365–74.Google Scholar
  76. 76.
    Grote JJ, van Blitterswijk CA, Kuijpers W. Hydroxyapatite ceramic as middle ear implant material: animal experimental results. Ann Otol Rhinol Laryngol Suppl. 1986;123:1–5.PubMedGoogle Scholar
  77. 77.
    Yamanaka E, Yanagihara N, Nakajima T, et al. Hydroxyapatite ossicular prosthesis in the cat middle ear. In: Transplants and implants in otology, proceedings of the International Symposium 1987. Amsterdam: Kugler & Ghedini Publications; 1988. p. 305–15.Google Scholar
  78. 78.
    Grote JJ. Tympanoplasty with calcium phosphate. Arch Otolaryngol. 1984;110:197–9.PubMedGoogle Scholar
  79. 79.
    Grote JJ. Tympanoplasty with calcium phosphate. Am J Otol. 1985;6:269–71.PubMedGoogle Scholar
  80. 80.
    Grote JJ. Reconstruction of the ossicular chain with hydroxyapatite implants. Ann Otol Rhinol Laryngol. 1986;95:10–2.Google Scholar
  81. 81.
    Grote JJ. Reconstruction of the ossicular chain with hydroxyapatite prostheses. Am J Otol. 1987;8:396–401.PubMedGoogle Scholar
  82. 82.
    Grote JJ. Reconstruction of the middle ear with hydroxylapatite implants: long-term results. Ann Otol Rhinol Laryngol Suppl. 1990;144:12–6.PubMedGoogle Scholar
  83. 83.
    Wehrs RE. Incus replacement prostheses of hydroxylapatite in middle ear reconstruction. Am J Otol. 1989;10:181–2.PubMedGoogle Scholar
  84. 84.
    Wehrs RE. Incus interposition and ossiculoplasty with hydroxyapatite prostheses. Otolaryngol Clin North Am. 1994;27:677–88.PubMedGoogle Scholar
  85. 85.
    Bagot d’Arc M. Alloplastische Materialien in der Ohrchirurgie. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. Band 1: Chirurgie, München: Sympomed; 1996. p. 47–54.Google Scholar
  86. 86.
    Geyer G, Helms J. Ionomer-based bone substitute in otologic surgery. Eur Arch Otorhinolaryngol. 1993;250:253–6.PubMedGoogle Scholar
  87. 87.
    McElveen JT. Ossiculoplasty with polymaleinate ionomeric prostheses. Otolaryngol Clin North Am. 1994;27:777–84.PubMedGoogle Scholar
  88. 88.
    McElveen Jr JT, Feghali JG, Barrs DM. Ossiculoplasty with polymaleinate ionomeric prosthesis. Otolaryngol Head Neck Surg. 1995;113:420–6.PubMedGoogle Scholar
  89. 89.
    Geyer G. Ionomerzement als Knochenersatzmaterial im Mittelohr des Kaninchens. HNO. 1997;4:222–6.Google Scholar
  90. 90.
    Dazert S, Geyer G. Ionomerzement-Implantate im Mittelohr des Kaninchens. Zentralblatt Hals-Nasen-Ohrenheilkunde. 1992;142:515.Google Scholar
  91. 91.
    Müller J, Geyer G, Helms J. Die Wiederherstellung der Schallübertragung im Mittelohr durch Rekonstruktion der Gehörknöchelchenkette in ihrem physiologischen Verbund. Erste Ergebnisse der Amboßrekonstruktion mit Ionomerzement. Laryngo Rhino Otol. 1994;73:160–3.Google Scholar
  92. 92.
    Bauer M, Pytel J, Vóna I, et al. Combination of ionomer cement and bone graft for ossicular reconstruction. Eur Arch Otorhinolaryngol. 2007;264:1267–73.PubMedGoogle Scholar
  93. 93.
    Babu S, Seidman MD. Ossicular reconstruction using bone cement. Otol Neurootol. 2004;25:98–101.Google Scholar
  94. 94.
    Plester D, Hildmann H, Steinbach E. Atlas der Ohrchirurgie. Stuttgart: Kohlhammer; 1989.Google Scholar
  95. 95.
    Gjuric M, Schagerl S. Gold prostheses for ossiculoplasty. Am J Otol. 1998;19:273–6.PubMedGoogle Scholar
  96. 96.
    Hoppe F, Pahnke J. Rasterelektronenmikroskopische und histologische Befunde an alloplastischem Gehörknöchelchen-Ersatz. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. v. Band 1: Chirurgie, München: Sympomed; 1996. p. 104–9.Google Scholar
  97. 97.
    Tange RA, Schimanski G, van Lange JW, et al. Reparative granuloma seen in cases of gold piston implantation after stapes surgery for otosclerosis. Auris Nasus Larynx. 2002;29:7–10.PubMedGoogle Scholar
  98. 98.
    Tange RA, Grolman W, Dreschler WA. Gold and titanium in the ova window: a comparison of two metal stapes prostheses. Otol Neurootol. 2004;25:102–5.Google Scholar
  99. 99.
    Schwager K. Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit. Eur Arch Otorhinolaryngol. 1998;255:396–401.PubMedGoogle Scholar
  100. 100.
    Schwager K. Titanium as an ossicular replacement material. Results sfter 336 days of implantation in the rabbit. Am J Otol. 1998;19:569–73.PubMedGoogle Scholar
  101. 101.
    Schwager K, Geyer G. Titanium and glass-ionomer cement as ossicular replacement materials: biocompatibility results after implantation in the rabbit. ORL. 1998;60:322–8.PubMedGoogle Scholar
  102. 102.
    Schwager K. Titanium in ossicular chain reconstruction. Morphological results in animal experiments and after implantation in the human middle ear. In: Rosowski JJ, Merchant SN, editors. The function and mechanics of normal, diseased and reconstructed middle ears. Amsterdam: Kugler Publications; 2000. p. 243–54.Google Scholar
  103. 103.
    Stupp CH, Stupp HF, Grün D. Gehörknöchelchenersatz mit Titan-Prothesen. Laryngol Rhinol Otol. 1996;75:335–7.Google Scholar
  104. 104.
    Hess-Erga J, Møller P, Vassboth FS. Long-term hearing result using Kurz titanium ossicular implants. Eur Arch Otorhinolary. 2013;270(6):1817–21.Google Scholar
  105. 105.
    Hüttenbrink KB, Luers JC, Beutner D. Titanium angular clip A new prosthesis for reconstruction of the long process of the incus. Otol Neurotol. 2009;30(8):1186–90. doi:  10.1097/MAO.0b013e3181b287f2.
  106. 106.
    Trabandt N, Brandes G, Wintermantel E, et al. Limitations of titanium dioxide and aluminium oxide as ossicular replacement materials: an evaluation of the effects of porosity on ceramic prostheses. Otol Neurotol. 2004;25:682–93.PubMedGoogle Scholar
  107. 107.
    Vincent R, Bittermann AJN, Wenzel G, et al. Ossiculoplasty in missing malleus and stapes patients: experimental and preliminary clinical results with a new malleus replacement prosthesis with the otology-neurotology database. Otol Neurotol. 2012;34:83–90.Google Scholar
  108. 108.
    Goode RL. The ideal middle ear prosthesis. In: Hüttenbrink KB (Hrsg). Middle ear mechanics in research and otosurgery. 1997; p. 169–174.Google Scholar
  109. 109.
    Hüttenbrink KB. Akustisch optimierte Mittelohrprothesen. Neue Techniken zur zukünftigen Erforschung und Entwicklung verbesserter Implantate HNO. 1997;45(7):509–11.Google Scholar
  110. 110.
    Rosowski JJ, Merchant SN. Mechanical and acoustic analysis of middle ear reconstruction. Am J Otol. 1995;16(4):486–97.PubMedGoogle Scholar
  111. 111.
    Merchant SN, McKenna MJ, Rosowski JJ. Current status and future challenges of tympanoplasty. Eur Arch Otorhinolaryngol. 1998;255(5):221–8.PubMedGoogle Scholar
  112. 112.
    Bance M, Morris DP, Van Wijhe RG, et al. Comparison of the mechanical performance of ossiculoplasty using a prosthetic malleus-to-stapes head with a tympanic membrane-to stapes head assembly in a human cadaveric middle ear model. Otol Neurotol. 2004;25:903–9.PubMedGoogle Scholar
  113. 113.
    Merchant SN, Rosowski JJ. Surgical reconstruction and passive prostheses. In: Puria S, Fay RR, Popper AN, editors. The middle ear: science, otosurgery, and technology, Springer handbook of auditory research. New York: Springer; 2013.Google Scholar
  114. 114.
    Hüttenbrink KB. Biomechanical aspects of middle ear reconstruction. In: Jahnke K, editor. Middle ear surgery. Current topics in otolaryngology. Stuttgart: Thieme; 2004. p. 23–51.Google Scholar
  115. 115.
    Goode RL, Nishihara S. Experimental models of ossiculoplasty. Otolaryngol Clin North Am. 1994;27(4):663–75.PubMedGoogle Scholar
  116. 116.
    Hüttenbrink K-B, Zahnert T, Wüstenberg EG, et al. Titanium clip prosthesis. Otol Neurotol. 2004;25:436–42.PubMedGoogle Scholar
  117. 117.
    Beutner D, Luers JC, Bornitz M, et al. Titanium clip ball joint: a partial ossicular reconstruction prosthesis. Otol Neurotol. 2011;32:646–9.PubMedGoogle Scholar
  118. 118.
    Mantei T, Chatzimichalis M, Sim JH. Ossiculoplasty with total ossicular replacement prosthesis and omega connector: early clinical results and functional measurements. Otol Neurotol. 2011;32:1102–7.PubMedGoogle Scholar
  119. 119.
    Quesnel S, Teissier N, Viala P, et al. Long term results of ossiculoplasties with partial and total titanium Vario Kurz prostheses in children. Int J Pediatr Otorhinolaryngol. 2010;74:1226–9.PubMedGoogle Scholar
  120. 120.
    Schimanski G. Die Arrosion und Nekrose des langen Ambossschenkels nach Otoskleroseoperation. HNO. 1997;45:682–9.PubMedGoogle Scholar
  121. 121.
    Zirkler J, Schwager K. Mastoidrekonstruktion mit einem Titangitter GMS. Curr Posters Otorhinolaryngol Head Neck Surg. 2011;7:Doc01.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of ENT, Head and Neck SurgeryKlinikum FuldaFuldaGermany

Personalised recommendations