Skip to main content

Passive Middle Ear Implants

  • Chapter
  • First Online:
Implantable Hearing Devices other than Cochlear Implants
  • 1044 Accesses

Abstract

Passive middle ear implants, by definition, reconstruct the disrupted or fixed ossicular chain. A prerequisite for an optimal sound transmission system is an aerated middle ear space and a closed tympanic membrane, both of which are passive conditions, and a normal functioning inner ear as the active part of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wullstein H. Funktionelle Operationen im Mittelohr mit Hilfe des freien Spalthaut-Transplantates. Arch Ohren Nasen Kehlkopfheilkd. 1952;161:422–35.

    Google Scholar 

  2. Schwager K. Mittelohrprothesen und das biologische Umfeld. Biomaterialien Interdisziplinäre Zeitschrift für Funktions-Werkstoffe im Hart- und Weichgewebe. 2000;1:42–7.

    Google Scholar 

  3. Beutner D, Hüttenbrink KB. Passive und aktive Mittelohrimplantate. Laryngo-Rhino-Otol. 2009;88:32–47.

    Google Scholar 

  4. Beutner D, Hüttenbrink KB. Passive and active ear implants. In: Pau HW, editor. Technology for quality of life – implants and biomaterials in otorhinolaryngology. Mönchengladbach: Rheinware; 2009.

    Google Scholar 

  5. Geyer G. Implantate in der Mittelohrchirurgie. Eur Arch Otolaryngol Suppl. 1992;I:185–221.

    Google Scholar 

  6. Dost P, Jahnke K. Biomaterials in reconstructive middle ear surgery. In: Jahnke K, editor. Middle ear surgery. Stuttgart: Thieme; 2004.

    Google Scholar 

  7. Dost P. Biomaterialien in der rekonstruktiven Mittelohrchirurgie. Laryngol Rhinol Otol. 2000;79:53–72.

    Google Scholar 

  8. Geyer G. Materialien zur Rekonstruktion des Schalleitungsapparats. HNO. 1999;47(2):77–91.

    CAS  PubMed  Google Scholar 

  9. Jaryszak EM, Sampson EM, Antonelli PJ. Biofilm formation by Pseudomonas aeruginosa on ossicular reconstruction prostheses. Am J Otol. 2009;30:367–70.

    CAS  Google Scholar 

  10. Brook I. Role of anaerobic bacteria in chronic otitis media and cholesteatoma. Int J Pediatr Otorhinolaryngol. 1995;31:153–7.

    CAS  PubMed  Google Scholar 

  11. Wang EW, Jun JY, Pashia ME, et al. Otopathogenic Pseudomonas aeruginosa strains as competent biofilm formers. Arch Otolaryngol Head Neck Surg. 2005;131:983–9.

    PubMed  Google Scholar 

  12. Gross U, Schmitz HJ, Kinne R, et al. Tissue or cell culture versus in vivo testing of surface-reactive biomaterials. In: Pizzoferrato A, Marchetti PG, Raviglioli A, et al., editors. Advances in biomaterials 7, biomaterials and clinical applications. Amsterdam: Elsevier; 1987. p. 547–56.

    Google Scholar 

  13. Jahnke K. Fortschritte der Mikrochirurgie des Mittelohres. HNO. 1987;35:1–13.

    CAS  PubMed  Google Scholar 

  14. Takahashi H, Hasebe S, Sudo M. State of Eustachian tube function in tympanoplasty. In: Alper CM, Bluestone CD, Casselbrant ML, editors. Advanced therapy of otitis media. Hamilton: BC Decker; 2004.

    Google Scholar 

  15. Dornhoffer JL, Leuwer R, Schwager K, et al. A practical guide to the Eustachian tube. Berlin: Springer; 2014.

    Google Scholar 

  16. Ockermann R, Reineke U, Upile T, et al. Balloon dilatation eustachian tuboplasty: a clinical study. Laryngoscope. 2010;120:1411–6.

    PubMed  Google Scholar 

  17. Poe DS, Silvola J, Pyykko I. Balloon dilation of the cartilaginous Eustachian tube. Otolaryngol Head Neck Surg. 2011;144:563–9.

    PubMed  Google Scholar 

  18. Sudhoff H, Schröder S, Reineke U, et al. Therapy of chronic obstructive eustachian tube dysfunction: evolution of applied therapies. HNO. 2013;61:477–82.

    CAS  PubMed  Google Scholar 

  19. Helms J. Die Wiederherstellung der Schalleitungskette. HNO. 1983;31:37–44.

    CAS  PubMed  Google Scholar 

  20. Helms J. Moderne Aspekte der Tympanoplastik. Laryng Rhinol Otol. 1995;74:465–7.

    CAS  Google Scholar 

  21. Dornhoffer JL. Cartilage tympanoplasty: indications, techniques, and outcomes in A 1,000-patient series. Laryngoscope. 2003;113:1844–56.

    PubMed  Google Scholar 

  22. Milewski C. Composite graft tympanoplasty in the treatment of ears with advanced middle ear pathology. Laryngoscope. 1993;103:1352–6.

    CAS  PubMed  Google Scholar 

  23. Heermann Jr J, Heermann H, Kopstein E. Fascia and cartilage palisade tympanoplasty. Nine years’ experience. Arch Otolaryngol. 1970;91:228–41.

    PubMed  Google Scholar 

  24. Mürbe D, Zahnert T, Bornitz M, et al. Acoustic properties of different cartilage reconstruction techniques of the tympanic membrane. Laryngoscope. 2002;112(10):1769–76.

    PubMed  Google Scholar 

  25. Zahnert T, Hüttenbrink KB. Fehlermöglichkeiten bei der Ossikelkettenrekonstruktion. HNO. 2005;1:89–102.

    Google Scholar 

  26. Decraemer WF, Khanna SM. Three dimensional vibration of the ossicular chain in the cat. In: Tomasini EP, editor. Vibration measurements by laser techniques: advances and applications. SPIE. 01-411; 2000.

    Google Scholar 

  27. Dornhoffer JL. Hearing results with the Dornhoffer ossicular replacement prostheses. Laryngoscope. 1998;108:531–6.

    CAS  PubMed  Google Scholar 

  28. Roach P, Eglin D, Rohde K, et al. Modern biomaterials: a review – bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18:1263–77.

    CAS  PubMed  Google Scholar 

  29. Thull R. Biokompatibilitätsbestimmende Eigenschaften der Grenzfläche. Biomaterialien Interdisziplinäre Zeitschrift für Funktions-Werkstoffe im Hart- und Weichgewebe. 2000;1:6–11.

    Google Scholar 

  30. Rößler S, Wolf C, Born R, et al. Biologisierung von Implantatoberflächen. Biomaterialien Interdisziplinäre Zeitschrift für Funktions-Werkstoffe im Hart- und Weichgewebe. 2000;1:32–6.

    Google Scholar 

  31. Ehlert N, Mueller PP, Stieve M, et al. Mesoporous silica films as a novel biomaterial: applications in the middle ear. Chem Soc Rev. 2013;42:3847–61.

    CAS  PubMed  Google Scholar 

  32. Vogt JC, Brandes G, Ehlert N, et al. Free Bioverit® II implants coated with a nanoporous silica layer in a mouse ear model – a histological study. J Biomater Appl. 2008;24:175.

    PubMed  Google Scholar 

  33. Steinbach E, Hildmann H. Der Wert des autologen Gehörknöchelchengewebes. Zentralblatt Hals-Nasen-Ohrenheilk. 1992/93;142:242.

    Google Scholar 

  34. Steinbach E, Karger B, Hildmann H. Zur Verwendung von Knorpeltransplantaten in der Mittelohrchirurgie. Eine histologische Langzeituntersuchung von Knorpelinterponaten. Laryng Rhinol Otol. 1992;71:11–4.

    CAS  Google Scholar 

  35. Frese KA, Hoppe F. Morphologische Untersuchungen an autologen und homologen Ossikeln nach Langzeitimplantation. Laryngo Rhino Otol. 1996;75:330–4.

    CAS  Google Scholar 

  36. Dornhoffer JL, Colvin GB, North P. Evidence of residual disease in ossicles of patients undergoing cholesteatoma removal. Acta Otolaryngol (Stockh). 1999;119:89–92.

    CAS  Google Scholar 

  37. Austin DF. Ossicular reconstruction. Arch Otolaryngol. 1971;94:525–35.

    CAS  PubMed  Google Scholar 

  38. Hildmann H, Karger B, Steinbach E. Ossikeltransplantate zur Rekonstruktion der Schallübertragung im Mittelohr. Eine histologische Langzeituntersuchung. Laryng Rhinol Otol. 1992;71:5–10.

    CAS  Google Scholar 

  39. Dazert S, Helms J. Rekonstruktion des Schalleitungsapparates. HNO. 1993;41:25–6.

    Google Scholar 

  40. Hartwein J. Dentinprothesen in der Mittelohrchirurgie. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. v, Band 1: Chirurgie. München: Sympomed; 1996. p. 14–7.

    Google Scholar 

  41. Beleites E, Rechenbach G. Implantologie in der Kopf-Hals-Chirurgie – gegenwärtiger stand. In: Ganz H, Schätzle W, editors. HNO Praxis Heute 12. Berlin/Heidelberg: Springer; 1992. p. 169–99.

    Google Scholar 

  42. Geyer G, Helms J. Rekonstruktive Operationen an Trommelfell und Gehörknöchelchen. Beitrag in: Helms J, Geyer G: Sanierende Operationen. In: Kopf- und Hals-Chirurgie, hrsg. v. Naumann HH, Helms J, Herberhold C et al. Band 1: Ohr, hrsg. v. Helms J, Jahrsdoerfer R. Stuttgart (u.a.): Thieme; 1996.

    Google Scholar 

  43. Treace HT. Biomaterials in ossiculoplasty and history of development of prostheses for ossiculoplasty. Otolaryngol Clin North Am. 1994;27:655–62.

    CAS  PubMed  Google Scholar 

  44. Austin DF. Avoiding failures in the restoration of hearing with ossiculoplasty and biocompatible implants. Otolaryngol Clin North Am. 1982;15:763–71.

    CAS  PubMed  Google Scholar 

  45. Cousins VC, Jahnke K. Light and electronmicroscopic studies on PolycelTM ossicular replacement prostheses. Clin Otolaryngol. 1987;12:183–9.

    CAS  PubMed  Google Scholar 

  46. Gjuric M, Mladina R, Koscak J. Die Plastipore-Prothese im Tierexperiment. Laryng Rhinol Otol. 1987;66:522–5.

    CAS  Google Scholar 

  47. Kerr AG, Brennan GP, Smyth GDL. Proplast® and Plastipore® in the middle ear. In: Grote JJ, editor. Biomaterials in Otology. Boston: Martinus Nijhoff Publ; 1984. p. 161–8.

    Google Scholar 

  48. Frootko NJ. Causes of ossiculoplasty failure using porous polyethylene (Plastipore®) prostheses. In: Grote JJ, editor. Biomaterials in Otology. Boston: Martinus Nijhoff Publ; 1984. p. 169–76.

    Google Scholar 

  49. Gerhardt HJ. Die kombinierte Knorpel-Draht-Bindegewebeprothese in der Tympanoplastik. Laryngol Rhinol Otol. 1969;48:227–83.

    CAS  Google Scholar 

  50. Kerr AG. Six years experience of Plastipore®. Clin Otolaryngol. 1984;9:361–7.

    CAS  PubMed  Google Scholar 

  51. Kuijpers W. Behaviour of bioimplants in the middle ear. In: Grote JJ, editor. Biomaterials in otology. Boston: Martinus Nijhoff Publ; 1984. p. 18–28.

    Google Scholar 

  52. Makek M, Mattox DE, Schmid S, et al. Histopathology of synthetic ossicular prostheses. In: Transplants and implants in otology, proceedings of the International Symposium 1987. Amsterdam: Kugler & Ghedini Publications; 1988. p. 231–7.

    Google Scholar 

  53. Makek M, Mattox DE, Schmid S, et al. Histology of synthetic ossicular prostheses. Arch Otolaryngol. 1988;114:1127–30.

    CAS  Google Scholar 

  54. Jahnke K. Zur Eignung keramischer Werkstoffe für die rekonstruktive Chirurgie des Gesichtsschädels und des Mittelohres. In: Biomaterialien und Nahtmaterial, hrsg. v. Rettig HM. Berlin (u.a.): Springer; 1984. p. 66–72.

    Google Scholar 

  55. Jahnke K. Neue Keramik-Implantate zur Rekonstruktion der Gehörknöchelchenkette. Laryng Rhinol Otol. 1992;71:1–4.

    CAS  Google Scholar 

  56. Jahnke K, Galic M. Zur Verträglichkeit bioinerter Aluminiumoxidkeramik im Mittelohr. Arch Oto-Rhino-Laryngol. 1980;227:624–7.

    Google Scholar 

  57. Jahnke K, Möckel C. Aluminiumoxid-Keramik in der Mittelohrchirurgie. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. v. Band 1: Chirurgie. München: Sympomed; 1996. p. 70–4.

    Google Scholar 

  58. Jahnke K, Plester D, Heimke G. Aluminiumoxid-Keramik, ein bioinertes Material für die Mittelohrchirurgie. Arch Oto-Rhino-Laryngol. 1979;223:373–6.

    Google Scholar 

  59. Yamamoto E. Aluminum oxide ceramic ossicular replacement prosthesis. Ann Otol Rhinol Laryngol. 1985;94:149–52.

    CAS  PubMed  Google Scholar 

  60. Yamamoto E. Long-term observations on ceramic ossicular replacement prosthesis (CORP). Laryngoscope. 1988;98:402–4.

    CAS  PubMed  Google Scholar 

  61. Friedberg P, Reck R. Histologische Untersuchungen an Aluminiumoxidkeramik im Kaninchenmittelohr. Laryngol Rhinol Otol. 1983;62:391–3.

    CAS  Google Scholar 

  62. Klein CPAT, Driessen AA, de Groot K, et al. Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res. 1983;17:769–84.

    CAS  PubMed  Google Scholar 

  63. Zöllner C, Büsing CM, Strutz J. TCP-Implantate in der Mittelohrchirurgie. Histologische Ergebnisse, Beurteilung. Laryng Rhinol Otol. 1984;63:220–5.

    Google Scholar 

  64. Zöllner C, Büsing CM. How useful is tricalcium phosphate ceramic in the middle ear surgery? Am J Otol. 1986;7:289–93.

    PubMed  Google Scholar 

  65. Zöllner C, Strutz J, Beck C, et al. Verödung des Warzenfortsatzes mit poröser Trikalziumphosphat-Keramik. Laryng Rhinol Otol. 1983;62:106–11.

    Google Scholar 

  66. Meyer A, Ergebnisse nach hörverbessernden Operationen mit bioaktiver Glaskeramik. Inaugural-Dissertation, Mainz; 1985.

    Google Scholar 

  67. Reck R. Tissue reactions to glass ceramics in the middle ear. Clin Otolaryngol. 1981;6:63–5.

    CAS  PubMed  Google Scholar 

  68. Reck R. Bioactive glass ceramic: a new material in tympanoplasty. Laryngoscope. 1983;93:196–9.

    CAS  PubMed  Google Scholar 

  69. Reck R, Störkel S, Meyer A. Langzeitergebnisse der Tympanoplastik mit Ceravital-Prothesen im Mittelohr. Laryng Rhinol Otol. 1987;66:373–6.

    CAS  Google Scholar 

  70. Reck R, Störkel S, Meyer A. Bioactive glass-ceramic in middle ear surgery. Ann N Y Acad Sci. 1988;523:100–6.

    CAS  PubMed  Google Scholar 

  71. Beleites E, Gudziol H, Höland W. Maschinell bearbeitbare Glaskeramik für die Kopf-Hals-Chirurgie. HNO-Praxis. 1988;13:121–5.

    Google Scholar 

  72. Jahnke K, Schmidt C. Histological studies on the suitability of Macor-ceramic middle ear implants. In: Grote JJ, editor. Biomaterials in otology. Boston: Martinus Nijhoff Publishers; 1984.

    Google Scholar 

  73. Grote JJ. Der Einsatz von Calciumphosphatkeramik in der rekonstruktiven Chirurgie des Mittelohres und der Schädelbasis. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. v. Band 1: Chirurgie. München: Sympomed; 1996. p. 79–80.

    Google Scholar 

  74. van Blitterswijk CA, Kuijpers W, Daems WT, et al. Epithelial reactions to hydroxyapatite. Acta Otolaryngol. 1986;101:231–41.

    PubMed  Google Scholar 

  75. Ducheyne P, Radin S, Cuckler JM. Bioactive ceramic coatings on metal: structureproperty relationships of surface and interfaces. In: Oonishi H, Aoki H, Sawai K, editors. Bioceramics. Tokyo: Ishiyaku Euro America; 1989. p. 365–74.

    Google Scholar 

  76. Grote JJ, van Blitterswijk CA, Kuijpers W. Hydroxyapatite ceramic as middle ear implant material: animal experimental results. Ann Otol Rhinol Laryngol Suppl. 1986;123:1–5.

    CAS  PubMed  Google Scholar 

  77. Yamanaka E, Yanagihara N, Nakajima T, et al. Hydroxyapatite ossicular prosthesis in the cat middle ear. In: Transplants and implants in otology, proceedings of the International Symposium 1987. Amsterdam: Kugler & Ghedini Publications; 1988. p. 305–15.

    Google Scholar 

  78. Grote JJ. Tympanoplasty with calcium phosphate. Arch Otolaryngol. 1984;110:197–9.

    CAS  PubMed  Google Scholar 

  79. Grote JJ. Tympanoplasty with calcium phosphate. Am J Otol. 1985;6:269–71.

    CAS  PubMed  Google Scholar 

  80. Grote JJ. Reconstruction of the ossicular chain with hydroxyapatite implants. Ann Otol Rhinol Laryngol. 1986;95:10–2.

    Google Scholar 

  81. Grote JJ. Reconstruction of the ossicular chain with hydroxyapatite prostheses. Am J Otol. 1987;8:396–401.

    CAS  PubMed  Google Scholar 

  82. Grote JJ. Reconstruction of the middle ear with hydroxylapatite implants: long-term results. Ann Otol Rhinol Laryngol Suppl. 1990;144:12–6.

    CAS  PubMed  Google Scholar 

  83. Wehrs RE. Incus replacement prostheses of hydroxylapatite in middle ear reconstruction. Am J Otol. 1989;10:181–2.

    CAS  PubMed  Google Scholar 

  84. Wehrs RE. Incus interposition and ossiculoplasty with hydroxyapatite prostheses. Otolaryngol Clin North Am. 1994;27:677–88.

    CAS  PubMed  Google Scholar 

  85. Bagot d’Arc M. Alloplastische Materialien in der Ohrchirurgie. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. Band 1: Chirurgie, München: Sympomed; 1996. p. 47–54.

    Google Scholar 

  86. Geyer G, Helms J. Ionomer-based bone substitute in otologic surgery. Eur Arch Otorhinolaryngol. 1993;250:253–6.

    CAS  PubMed  Google Scholar 

  87. McElveen JT. Ossiculoplasty with polymaleinate ionomeric prostheses. Otolaryngol Clin North Am. 1994;27:777–84.

    PubMed  Google Scholar 

  88. McElveen Jr JT, Feghali JG, Barrs DM. Ossiculoplasty with polymaleinate ionomeric prosthesis. Otolaryngol Head Neck Surg. 1995;113:420–6.

    PubMed  Google Scholar 

  89. Geyer G. Ionomerzement als Knochenersatzmaterial im Mittelohr des Kaninchens. HNO. 1997;4:222–6.

    Google Scholar 

  90. Dazert S, Geyer G. Ionomerzement-Implantate im Mittelohr des Kaninchens. Zentralblatt Hals-Nasen-Ohrenheilkunde. 1992;142:515.

    Google Scholar 

  91. Müller J, Geyer G, Helms J. Die Wiederherstellung der Schallübertragung im Mittelohr durch Rekonstruktion der Gehörknöchelchenkette in ihrem physiologischen Verbund. Erste Ergebnisse der Amboßrekonstruktion mit Ionomerzement. Laryngo Rhino Otol. 1994;73:160–3.

    Google Scholar 

  92. Bauer M, Pytel J, Vóna I, et al. Combination of ionomer cement and bone graft for ossicular reconstruction. Eur Arch Otorhinolaryngol. 2007;264:1267–73.

    PubMed  Google Scholar 

  93. Babu S, Seidman MD. Ossicular reconstruction using bone cement. Otol Neurootol. 2004;25:98–101.

    Google Scholar 

  94. Plester D, Hildmann H, Steinbach E. Atlas der Ohrchirurgie. Stuttgart: Kohlhammer; 1989.

    Google Scholar 

  95. Gjuric M, Schagerl S. Gold prostheses for ossiculoplasty. Am J Otol. 1998;19:273–6.

    CAS  PubMed  Google Scholar 

  96. Hoppe F, Pahnke J. Rasterelektronenmikroskopische und histologische Befunde an alloplastischem Gehörknöchelchen-Ersatz. In: Hagen R, Geyer G, Helms J, editors. Knochenersatz in der Mittelohr- und Schädelbasischirurgie, hrsg. v. Band 1: Chirurgie, München: Sympomed; 1996. p. 104–9.

    Google Scholar 

  97. Tange RA, Schimanski G, van Lange JW, et al. Reparative granuloma seen in cases of gold piston implantation after stapes surgery for otosclerosis. Auris Nasus Larynx. 2002;29:7–10.

    PubMed  Google Scholar 

  98. Tange RA, Grolman W, Dreschler WA. Gold and titanium in the ova window: a comparison of two metal stapes prostheses. Otol Neurootol. 2004;25:102–5.

    Google Scholar 

  99. Schwager K. Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit. Eur Arch Otorhinolaryngol. 1998;255:396–401.

    CAS  PubMed  Google Scholar 

  100. Schwager K. Titanium as an ossicular replacement material. Results sfter 336 days of implantation in the rabbit. Am J Otol. 1998;19:569–73.

    CAS  PubMed  Google Scholar 

  101. Schwager K, Geyer G. Titanium and glass-ionomer cement as ossicular replacement materials: biocompatibility results after implantation in the rabbit. ORL. 1998;60:322–8.

    CAS  PubMed  Google Scholar 

  102. Schwager K. Titanium in ossicular chain reconstruction. Morphological results in animal experiments and after implantation in the human middle ear. In: Rosowski JJ, Merchant SN, editors. The function and mechanics of normal, diseased and reconstructed middle ears. Amsterdam: Kugler Publications; 2000. p. 243–54.

    Google Scholar 

  103. Stupp CH, Stupp HF, Grün D. Gehörknöchelchenersatz mit Titan-Prothesen. Laryngol Rhinol Otol. 1996;75:335–7.

    CAS  Google Scholar 

  104. Hess-Erga J, Møller P, Vassboth FS. Long-term hearing result using Kurz titanium ossicular implants. Eur Arch Otorhinolary. 2013;270(6):1817–21.

    Google Scholar 

  105. Hüttenbrink KB, Luers JC, Beutner D. Titanium angular clip A new prosthesis for reconstruction of the long process of the incus. Otol Neurotol. 2009;30(8):1186–90. doi: 10.1097/MAO.0b013e3181b287f2.

  106. Trabandt N, Brandes G, Wintermantel E, et al. Limitations of titanium dioxide and aluminium oxide as ossicular replacement materials: an evaluation of the effects of porosity on ceramic prostheses. Otol Neurotol. 2004;25:682–93.

    PubMed  Google Scholar 

  107. Vincent R, Bittermann AJN, Wenzel G, et al. Ossiculoplasty in missing malleus and stapes patients: experimental and preliminary clinical results with a new malleus replacement prosthesis with the otology-neurotology database. Otol Neurotol. 2012;34:83–90.

    Google Scholar 

  108. Goode RL. The ideal middle ear prosthesis. In: Hüttenbrink KB (Hrsg). Middle ear mechanics in research and otosurgery. 1997; p. 169–174.

    Google Scholar 

  109. Hüttenbrink KB. Akustisch optimierte Mittelohrprothesen. Neue Techniken zur zukünftigen Erforschung und Entwicklung verbesserter Implantate HNO. 1997;45(7):509–11.

    Google Scholar 

  110. Rosowski JJ, Merchant SN. Mechanical and acoustic analysis of middle ear reconstruction. Am J Otol. 1995;16(4):486–97.

    CAS  PubMed  Google Scholar 

  111. Merchant SN, McKenna MJ, Rosowski JJ. Current status and future challenges of tympanoplasty. Eur Arch Otorhinolaryngol. 1998;255(5):221–8.

    CAS  PubMed  Google Scholar 

  112. Bance M, Morris DP, Van Wijhe RG, et al. Comparison of the mechanical performance of ossiculoplasty using a prosthetic malleus-to-stapes head with a tympanic membrane-to stapes head assembly in a human cadaveric middle ear model. Otol Neurotol. 2004;25:903–9.

    PubMed  Google Scholar 

  113. Merchant SN, Rosowski JJ. Surgical reconstruction and passive prostheses. In: Puria S, Fay RR, Popper AN, editors. The middle ear: science, otosurgery, and technology, Springer handbook of auditory research. New York: Springer; 2013.

    Google Scholar 

  114. Hüttenbrink KB. Biomechanical aspects of middle ear reconstruction. In: Jahnke K, editor. Middle ear surgery. Current topics in otolaryngology. Stuttgart: Thieme; 2004. p. 23–51.

    Google Scholar 

  115. Goode RL, Nishihara S. Experimental models of ossiculoplasty. Otolaryngol Clin North Am. 1994;27(4):663–75.

    CAS  PubMed  Google Scholar 

  116. Hüttenbrink K-B, Zahnert T, Wüstenberg EG, et al. Titanium clip prosthesis. Otol Neurotol. 2004;25:436–42.

    PubMed  Google Scholar 

  117. Beutner D, Luers JC, Bornitz M, et al. Titanium clip ball joint: a partial ossicular reconstruction prosthesis. Otol Neurotol. 2011;32:646–9.

    PubMed  Google Scholar 

  118. Mantei T, Chatzimichalis M, Sim JH. Ossiculoplasty with total ossicular replacement prosthesis and omega connector: early clinical results and functional measurements. Otol Neurotol. 2011;32:1102–7.

    PubMed  Google Scholar 

  119. Quesnel S, Teissier N, Viala P, et al. Long term results of ossiculoplasties with partial and total titanium Vario Kurz prostheses in children. Int J Pediatr Otorhinolaryngol. 2010;74:1226–9.

    CAS  PubMed  Google Scholar 

  120. Schimanski G. Die Arrosion und Nekrose des langen Ambossschenkels nach Otoskleroseoperation. HNO. 1997;45:682–9.

    CAS  PubMed  Google Scholar 

  121. Zirkler J, Schwager K. Mastoidrekonstruktion mit einem Titangitter GMS. Curr Posters Otorhinolaryngol Head Neck Surg. 2011;7:Doc01.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Schwager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Schwager, K. (2014). Passive Middle Ear Implants. In: Mankekar, G. (eds) Implantable Hearing Devices other than Cochlear Implants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1910-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1910-1_1

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1909-5

  • Online ISBN: 978-81-322-1910-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics