Advertisement

Introduction

Chapter
  • 710 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 560)

Abstract

Binarization is one of the most important preprocessing steps in most of the vision-based systems for object detection and classification. Application of binarization includes finding out the region of interest from a given image targeted for a particular application. This chapter presents introductory information to the main subject of the book—binarization.

Keywords

Image segmentation Binarization Thresholding Applications of binarization Document image binarization Threshold 

References

  1. 1.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  2. 2.
    Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  4. 4.
    Gonzalez, R., Woods, R.: Digital Image Processing. Pearson Prentice Hall, Upper Saddle River (2008). (International 3rd Revised Edition, Chapter: 10)Google Scholar
  5. 5.
    Datta, S., Singh, P.K., Sarkar, R., Nasipuri, M.: A new image binarization technique by classifying document images. In: 5th International Conference on Pattern Recognition and Machine Intelligence (PReMI), pp. 539–544 (2013)Google Scholar
  6. 6.
    Su, B., Lu, S., Tan, C.L.: Robust document image binarization technique for degraded document images. IEEE Trans. Image Process. 22(4), 1408–1417 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cheriet, M., Moghaddam, R.F., Hedjam, R.: A learning framework for the optimization and automation of document binarization methods. Comput. Vis. Image Underst. (CVIU) 117(3), 269–280 (2013)CrossRefGoogle Scholar
  8. 8.
    Shaikh, S.H., Maity, A.K., Chaki, N.: A new image binarization method using iterative partitioning. Springer J. Mach. Vis. Appl. (MVAP) 24(2), 337–350 (2013)CrossRefGoogle Scholar
  9. 9.
    Mollah, A.F., Basu, S., Nasipuri, M., Basu, D.K.: Handheld mobile device based text region extraction and binarization of image embedded text documents. J. Intell. Syst. 22(1), 25–47 (2013)Google Scholar
  10. 10.
    Mitra, S., Kundu, P.P.: Satellite image segmentation with Shadowed C-Means. J. Inform. Sci. 181, 3601–3613 (2011)CrossRefGoogle Scholar
  11. 11.
    Rodriguez, R.: Binarization of medical images based on the recursive application of mean shift filtering: another algorithm. J. Adv. Appl. Bioinf. Chem. 1, 1–12 (2008)Google Scholar
  12. 12.
    Rosin, P.L.: Thresholding for change detection. Comput Vis Image Underst (CVIU) 86(2), 79–95 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Shaikh, S.H., Bhunia, S.K., Chaki, N.: On generation of silhouette of moving objects from video. In: Springer Proceedings of the 4th International Conference on Signal and Image Processing (ICSIP), vol. 1, pp. 213–223 (2012)Google Scholar
  14. 14.
    Walus, M., Kosmala, J., Saeed K.: Finger vein pattern extraction algorithm. In: 6th International Conference on Hybrid Artificial Intelligent Systems (HAIS), pp. 404–411 (2011)Google Scholar
  15. 15.
    Shaikh, S.H., Saeed, K., Chaki, N.: Performance benchmarking of different binarization techniques for fingerprint-based biometric authentication. In: Springer Proceedings of the 8th International Conference on Computer Recognition Systems (CORES), Part-II, pp. 237–246 (2013)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Computer Science and EngineeringUniversity of CalcuttaKolkataIndia
  2. 2.A. K. Choudhury School of Information TechnologyUniversity of CalcuttaKolkataIndia
  3. 3.Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations