Molecular Pathology and Cytogenetics of Endometrial Carcinoma, Carcinosarcoma, and Uterine Sarcomas

  • Anupama Rajanbabu


Uterine neoplasms include epithelial cancers (endometrial carcinomas and carcinosarcomas) and mesenchymal neoplasms (leiomyosarcomas and endometrial stromal sarcomas). The epithelial cancers occur much more frequently than uterine mesenchymal tumors, and hence more information is available on their molecular pathology. Carcinosarcoma of the uterus previously considered as mixed neoplasms with stromal and epithelial elements is now classified as high-grade endometrial carcinoma on the basis of genetic and molecular characteristics. This chapter will describe the molecular and cytogenetic features of uterine cancers.


Endometrial Cancer Lynch Syndrome Endometrial Carcinoma PIK3CA Mutation Gynecologic Oncology Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu F-S. Molecular carcinogenesis of endometrial cancer. Taiwan J Obstet Gynecol. 2007;46(1):26–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Sherman ME, Bur ME, Kurman RJ. p53 in endometrial cancer and its putative precursors: evidence for diverse pathways of tumorigenesis. Hum Pathol. 1995;26(11):1268–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Matias-Guiu X, Catasus L, Bussaglia E, et al. Molecular pathology of endometrial hyperplasia and carcinoma. Hum Pathol. 2001;32:569–77.CrossRefPubMedGoogle Scholar
  5. 5.
    Llobet D, Pallares J, Yeramian A, et al. Molecular pathology of endometrial carcinoma; practical aspects from the diagnostic and therapeutic viewpoints. J Clin Pathol. 2009;62:777–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Matias‐Guiu X, Prat J. Molecular pathology of endometrial carcinoma. Histopathology. 2013;62:111–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.CrossRefGoogle Scholar
  8. 8.
    Caduff RF, Johnston CM, Svoboda-Newman SM, et al. Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am J Pathol. 1996;148:1671–8.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Weng LP, Smith WM, Dhalia P, et al. PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res. 1999;59:5808–14.PubMedGoogle Scholar
  10. 10.
    Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Janiec-Jankowska A, Konopka B, Goluda C, et al. TP53 mutations in endometrial cancers. Int J Gynecol Cancer. 2010;20(2):196–202.CrossRefPubMedGoogle Scholar
  12. 12.
    Ellis PE, Ghaem-Maghami S. Molecular characteristics and risk factors in endometrial cancer. Int J Gynecol Cancer. 2010;20(7):1207–16.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmed Q, Alosh B, Bandyopadhyay S, Ali-Fehmi R. Gynecologic cancers: molecular updates. Clin Lab Med. 2013;33(4):911–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Lax SF. Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch. 2004;444(3):213–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Bussagalia E, del Rio E, Matias-Guiu X, et al. PTEN mutations in endometrial carcinomas: a molecular and clinicopathologic analysis of 38 cases. Hum Pathol. 2000;31:312–7.CrossRefGoogle Scholar
  16. 16.
    Kapucuoglu N, Aktepe F, Kaya H, et al. Immunohistochemical expression of PTEN in normal, hyperplastic and malignant endometrium and its correlation with hormone receptors, bcl-2, bax, and apoptotic index. Pathol Res Pract. 2007;203:153–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Terakawa N, Kanamori Y, Yoshida S. Loss of PTEN expression followed by Akt phosphorylation is a poor prognostic factor for patients with endometrial cancer. Endocr Relat Cancer. 2003;10:203–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Salvesten HB, Stefansson I, Kretzschmar EI, et al. Significance of PTEN alterations in endometrial carcinoma: a population-based study of mutations, promoter methylation and PTEN protein expression. Int J Oncol. 2004;25:1615–23.Google Scholar
  19. 19.
    Wolf J, Slomovitz BM. Novel biologic therapies for the treatment of endometrial cancer. Int J Gynecol Cancer. 2005;15:411–2.CrossRefGoogle Scholar
  20. 20.
    Oza M, Elit L, Biagi J, et al. Molecular correlates associated with a phase II study of temsirolimus (CCI-779) in patients with metastatic or recurrent endometrial cancer: NCIC IND 160. 2006 ASCO Annual Meeting Proceedings (Post-meeting edition), J Clin Oncol; 2006. p. 24.Google Scholar
  21. 21.
    Enomoto T, Fujita M, Inoue M, et al. Alterations of the p53 tumour suppressor gene and its association with activation of the c-K-ras protooncogene in pre-malignant and malignant lesions of the human endometrium. Cancer Res. 1993;53:1883–8.PubMedGoogle Scholar
  22. 22.
    Sakasi H, Nisi I, Takahoshith H, et al. Mutation of the k-ras protooncogene in endometrial hyperplasia and carcinoma. Cancer Res. 1993;53:1906–10.Google Scholar
  23. 23.
    Lagarda H, Catasus L, Arg€ uelles R, Matias-Guiu X, Prat J. K- ras mutations in endometrial carcinoma with microsatellite instability. J Pathol. 2001;193:193–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Moreno-Bueno G, Sanchez-Estevez C, Palacios J, Hardisson D, Shiozawa T. Low frequency of BRAF mutations in endometrial and in cervical carcinomas. Clin Cancer Res. 2006;15:3865–6.CrossRefGoogle Scholar
  25. 25.
    Pallares J, Velasco A, Eritja N, et al. Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma. Mod Pathol. 2008;21:691–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Oda K, Stokoe D, Taketani Y, et al. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65:10669–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Machin P, Catasus L, Pons C, et al. CTNNB1 mutations and beta-catenin expression in endometrial carcinomas. Hum Pathol. 2002;33:206–12.CrossRefPubMedGoogle Scholar
  28. 28.
    Saegusa M, Hashimura M, Yoshida T, et al. β-catenin nuclear accumulation and aberrant nuclear expression during endometrial tumorigenesis. Br J Cancer. 2001;84:209–17.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Gatius S, Velasco A, Azueta A, et al. FGFR-2 alterations in endometrial carcinoma. Mod Pathol. 2011;24:1500–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Hayes MP, Ellenson LH. Molecular alterations in uterine serous carcinoma. Gynecol Oncol. 2010;116:286–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Tashiro H, Isacson C, Levine R, et al. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol. 1997;150:177–85.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Horree N, van Diest P, van der Groep P, et al. Progressive derailment of cell cycle regulators in endometrial carcinogenesis. J Clin Pathol. 2008;61:36–42.CrossRefPubMedGoogle Scholar
  33. 33.
    Kalogiannidis I, Bobos M, Papanikolaou A, et al. Immunohistochemical bcl-2 expression, p53 overexpression, PR and ER status in endometrial carcinoma and survival outcomes. Eur J Gynaecol Oncol. 2008;29:19–25.PubMedGoogle Scholar
  34. 34.
    Villela J, Cohen S, Smith S, et al. HER-2/neu overexpression in uterine papillary serous cancer and its possible therapeutic implication. Int J Gynecol Cancer. 2006;16:1897–902.CrossRefGoogle Scholar
  35. 35.
    Roses R, Paulson E, Sharma A, et al. HEU-2/neu over expression as a predictor for the transition from in situ to invasive breast cancer. Cancer Epidemiol Biomarkers Prev. 2009;18:1386–9.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Hogdall E, Christensen L, Kjaer S, et al. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer study. Cancer. 2003;98:66–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Saffari B, Jones L, El-Naggar A, et al. Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res. 1995;55:5693–8.PubMedGoogle Scholar
  38. 38.
    Slomovitz B, Broaddus R, Burke T, et al. Her2/neu overexpression and amplification in uterine papillary serous carcinoma. J Clin Oncol. 2004;22:3126–32.CrossRefPubMedGoogle Scholar
  39. 39.
    Fleming G, Sill M, Darcy K, et al. Phase II trial of trastuzumab in women with advanced or recurrent HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2010;116:15–20.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Sakuragi N, Nishiya M, Ikeda K, et al. Decreased E-cadherin expression in endometrial carcinoma is associated with tumour differentiation and deep myometrial invasion. Gynecol Oncol. 1994;53:183–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Moreno-Bueno G, Hardisson D, Sarrio D, et al. Abnormalities of E- and P-cadherin and catenin (A-F-catenin and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J Pathol. 2003;199:471–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Tsikouras P, Bouchlariotou S, Vrachnis N, Dafopoulos A, Galazios G, Csorba R, et al. Endometrial cancer: molecular and therapeutic aspects. Eur J Obstet Gynecol Reprod Biol. 2013;169(1):1–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Hayes MP, Douglas W, Ellenson LH. Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma. Gynecol Oncol. 2009;113:370–3.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Leslie KK, Laidler L, Albitar L, et al. Tyrosine kinase inhibitors in endometrial cancer. Int J Gynecol Cancer. 2005;15:409–11.CrossRefGoogle Scholar
  45. 45.
    Tritz D, Pieretti M, Turner S, Powell D. Loss of heterozygosity in usual and special variant carcinomas of the endometrium. Hum Pathol. 1997;28:607–12.CrossRefPubMedGoogle Scholar
  46. 46.
    Cao QJ, Belbin T, Socci N, et al. Distinctive gene expression profiles by cDNA microarrays in endometrioid and serous carcinomas of the endometrium. Int J Gynecol Pathol. 2004;23:321–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Schwab CL, Bellone S, English DP, et al. Afatinib demonstrates remarkable activity against HER2-amplified uterine serous endometrial cancer in vitro and in vivo. Br J Cancer. 2014;111(9):1750–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Aghajanian C, Sill MW, Darcy KM, Greer B, McMeekin DS, Rose PG, et al. Phase II trial of bevacizumab in recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2011;29(16):2259–65.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Aertgeerts K, Skene R, Yano J, Sang BC, Zou H, Snell G, et al. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2. J Biol Chem. 2011;286:18756–65.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Leslie KK, Sill MW, Lankes HA, Edgar G, Godwin AK, Gray H, et al. Lapatinib and potential prognostic value of EGFR mutations in a Gynecologic Oncology Group phase II trial of persistent or recurrent endometrial cancer. Gynecol Oncol. 2012;127(2):345–50.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Leslie KK, Sill MW, Fischer E, Darcy KM, Mannel RS, Tewari KS, et al. A phase II evaluation of Gefitinib in the treatment of persistent or recurrent endometrial cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2013;129(3):486–94.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Konecny GE, Kolarova T, O’Brien NA, Winterhoff B, Yang G, Qi J, et al. Activity of the fibroblast growth factor receptor inhibitors dovitinib (TKI258) and NVP-BGJ398 in human endometrial cancer cells. Mol Cancer Ther. 2013;12(5):632–42.CrossRefPubMedGoogle Scholar
  53. 53.
    Schuler KM, Rambally BS, DiFurio MJ, et al. Antiproliferative and metabolic effects of metformin in a preoperative window clinical trial for endometrial cancer. Cancer Med. 2014. doi: 10.1002/cam4.353. [Epub ahead of print].
  54. 54.
    Wada H, Enomto T, Fujita M, et al. Molecular evidence that most but not all carcinosarcomas of the uterus are combination tumors. Cancer Res. 1997;57:5379–85.PubMedGoogle Scholar
  55. 55.
    Zeisberg M, Neilson EG. Biomarkers for epithelial–mesenchymal transitions. J Clin Invest. 2009;119:1429–37.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    McConechy MK, Ding J, Cheang MC, et al. Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol. 2012;228:20–30.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Castilla MA, Moreno-Bueno G, Romero-Pérez L, et al. Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol. 2011;223:72–80.CrossRefPubMedGoogle Scholar
  58. 58.
    Perot G, Croce S, Ribeiro A, et al. Med12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7, e40015.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Chiang S, Oliva E. Recent developments in uterine mesenchymal neoplasms. Histopathology. 2013;62(1):124–37.CrossRefPubMedGoogle Scholar
  60. 60.
    Kobayashi H, Uekuri C, Akasaka J, Ito F, Shigemitsu A, Koike N, et al. The biology of uterine sarcomas: a review and update. Mol Clin Oncol. 2013;1(4):599–609.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Mittal KR, Chen F, Wei JJ, et al. Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod Pathol. 2009;22:1303–11.CrossRefPubMedGoogle Scholar
  62. 62.
    Ip PPC, Cheung ANY. Pathology of uterine leiomyosarcomas and smooth muscle tumours of uncertain malignant potential. Best Pract Res Clin Obstet Gynaecol. 2011;25(6):691–704.CrossRefPubMedGoogle Scholar
  63. 63.
    Makinen N, Mehine M, Tolvanen J, et al. Med12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Matsubara A, Sekine S, Yoshida M, et al. Prevalence of Med12 mutations in uterine and extrauterine smooth muscle tumors. Histopathology. 2013;62(4):657–61.CrossRefPubMedGoogle Scholar
  65. 65.
    Makinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM, Aaltonen LA. Med12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget. 2011;2:966–9.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Danielson LS, Menendez S, Attolini CS, et al. A differentiation based microRNA signature identifies leiomyosarcoma as a mesenchymal stem cell-related malignancy. Am J Pathol. 2010;177:908–17.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Mansi JL, Ramachandra S, Wiltshaw E, Fisher C. Endometrial stromal sarcomas. Gynecol Oncol. 1990;36:113–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Tavassoli FA, Devilee P. World Health Organization classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003.Google Scholar
  69. 69.
    Chiang S, Oliva E. Cytogenetic and molecular aberrations in endometrial stromal tumors. Hum Pathol. 2011;42(5):609–17.CrossRefPubMedGoogle Scholar
  70. 70.
    Dal Cin P, Talcott J, Abrams J, Li FP, Sandberg AA. Ins(10;19) in an endometrial stromal sarcoma. Cancer Genet Cytogenet. 1988;36:1–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Sreekantaiah C, Li FP, Weidner N, Sandberg AA. An endometrial stromal sarcoma with clonal cytogenetic abnormalities. Cancer Genet Cytogenet. 1991;55:163–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science. 2008;321:1357–61.CrossRefPubMedGoogle Scholar
  73. 73.
    Koontz JI, Soreng AL, Nucci M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98:6348–53.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Chiang S, Castilla MA, Palacios J, et al. Microrna expression profiling of low-grade endometrial stromal sarcomas and undifferentiated endometrial sarcomas. Mod Pathol. 2012;25:263A.Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Gynecological OncologyAmrita Institute of Medical Sciences and Research Centre, Amrita VishwavidyapeethamKochiIndia

Personalised recommendations