Skip to main content

Recent Advances in Surface Alloying of Austenitic Stainless Steel by Plasma Nitriding

  • Chapter
  • First Online:
An Introduction to Surface Alloying of Metals

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

  • 1375 Accesses

Abstract

Surface alloying of materials by plasma nitriding using glow discharge plasma nitriding has become an important environmentally benign surface modification process to obtain improved hardness, wear resistance, and corrosion resistance. In this paper, surface alloying of austenitic stainless steels and Cr-coated austenitic stainless steel by plasma nitriding is discussed. Comparative studies on these materials are discussed in relation to kinetics, phase distribution, and nitriding mechanism. The chapter also deals with thermal stability, dimensional variation, wear resistance, and the mechanism of formation of Cr–N coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittemeijer EJ, Vogels ABP, Va Der Schaaf PJ (1982) J Mater Sci 15:3129–3140

    Google Scholar 

  2. Mirdha S, Jack DJ (1982) Metal Sci 16:398–404

    Google Scholar 

  3. Spies HJ, Reinhold B, Wilsdorf K (2001) Surf Eng 17:41–47

    Article  Google Scholar 

  4. Karamis MB (1991) Thin Solid Films 203:49

    Article  Google Scholar 

  5. Li CX, Sun Y, Bell T (2000) J Mater Sci Lett 19:1793

    Article  Google Scholar 

  6. Karaoglu S (2003) Mater Charact 49:1793

    Google Scholar 

  7. Staines T (1990) Heat Treat Met 4:85

    Google Scholar 

  8. Jones CK, Martin S, Sturges DJ, Hudis M (1973) Heat treatment, vol 73. Metals Society, London, p 71

    Google Scholar 

  9. Jewbury P (1986) Mater Forum 9(3):179–181

    Google Scholar 

  10. Rie KT, Menthe E, Mathews A, Legg K, Chin J (1996) MRS Bull 21:46–51

    Google Scholar 

  11. El-Hossary M, Negam NZ, El-Rahman AM, Hammad M, Templier C (2008) Surf Coat Technol 202:1392–1400

    Google Scholar 

  12. Schaaf P, Emmel A, Illgner C, Lieb KP, Schubert E, Bergmann HW (1995) Mater Sci Eng A 197:L1–L4

    Google Scholar 

  13. Menthe E, Rie KT (1999) Surf Coat Technol 112:217

    Article  Google Scholar 

  14. Lunarska E, Nikiforow K, Wierzchon T, Pokorska U (2001) Surf Coat Technol 145:139

    Article  Google Scholar 

  15. Rolinski E, Sharp G, Cowgill DF, Peterman DJ (1998) J Nucl Mater 252:200–208

    Google Scholar 

  16. Gredelj S, Gerson AR, Kumar S, McIntyre NS (2002) Appl Surf Sci 199:234–247

    Google Scholar 

  17. Visuttipitukul P, Aizawa T, Kuwahara H (2003) Mater Trans 44(7):1412–1418

    Google Scholar 

  18. Pinasco MR, Ienco MG, GurNone P, Bocchini GF (2000) J Mater Sci 35:4079–4086

    Article  Google Scholar 

  19. Alves C Jr, da Silva EF, Martinelli AE (2001) Surf Coat Technol 139:1–5

    Google Scholar 

  20. Larisch B, Brusky U, Spies H (1999) Surf Coat Technol 116–119:205–211

    Article  Google Scholar 

  21. Collins GA, Hutchings R, Tendys J (1993) Surf Coat Technol 59:267–273

    Article  Google Scholar 

  22. Li XY (2001) Surf Eng 17(2):147–152

    Article  Google Scholar 

  23. Hirsch T, Clarke TGR, da Silva Rocha A (2007) Surf Coat Technol 201:6380–6386

    Google Scholar 

  24. Feugeas B, Gomez AC (2002) Surf Coat Technol 157:167–175

    Google Scholar 

  25. Metals Handbook, 9th Edition (1981) Heat treating. American Society for Metals, Materials Park, Ohio, 4:211

    Google Scholar 

  26. Takada J, Ohizumi Y, Miyamura H, Kuwahara H, Kikuchi S, Tamura I (1986) J Mater Sci 21:2493–2496

    Article  Google Scholar 

  27. Billon B, Hendry A (1985) Surf Eng 1(2):125–130

    Article  Google Scholar 

  28. Chung MF, Yap AK, Lim YK (1985) Scr Metall 19:415–419

    Article  Google Scholar 

  29. Chung MF, Lim YK (1986) Scr Metall 20:807

    Article  Google Scholar 

  30. Sundararaman D, Kuppusami P, Raghunathan VS (1983) Surf Technol 18:341–347

    Article  Google Scholar 

  31. Sundararaman D, Kuppusami P, Raghunathan VS (1987) Surf Coat Technol 30:343

    Article  Google Scholar 

  32. Kuppusami P, Terrance ALE, Sundararaman D, Raghunathan VS (1993) Surf Eng 9:142

    Google Scholar 

  33. Zhang ZL, Bell T (1985) Surf Eng 1:131

    Article  Google Scholar 

  34. Kuppusami P, Dasgupta A, Raghunathan VS (2002) J Iron Steel Inst Japan Int 42:1457–1460

    Google Scholar 

  35. Pierson H (1996) Handbook of refractory carbides and nitrides. Noyes Publications, New Jersey, p 18

    Google Scholar 

  36. Elangovan T, Kuppusami P, Thirumurugesan R, Ganesan V, Mohandas E, Mangalaraj D (2010) Mater Sci Eng, B 167:17–25

    Article  Google Scholar 

  37. Kuppusami P, Elangovan T, Murugesan S, Thirumurugesan R, Khan R, Ramaseshan R, Divakar R, Mohandas E, Mangalaraj D (2012) Surf Eng 28(2):134–140

    Google Scholar 

  38. Musil J, Jirout M (2007) Surf Coat Technol 201:5148–5152

    Article  Google Scholar 

  39. Lehrer B (1930) Z Elektrochem 6(6):383

    Google Scholar 

  40. Kooi BJ, Somers MA, Mittemeijer EJ (1996) Metall Mater Trans A Phys Metall. Mater Sci 27A:1063

    Google Scholar 

  41. Berghause B (1932) German Patent 669:639

    Google Scholar 

  42. Von Bosse J et al (1932) Swiss Patent 172:432

    Google Scholar 

  43. Venugopalan M, Asni R (1985) In: Klabunde KJ (ed) Thin films from free atoms and particles. Academic Press, Inc. Orlando, p 54

    Google Scholar 

  44. Brokman A (1980) J Vac Tech 17:657

    Article  Google Scholar 

  45. Brokman A, Tuler FR (1981) J Appl Phys 52(1):468

    Article  Google Scholar 

  46. Edenhofer B (1974) Heat Treat Met 1:23

    Google Scholar 

  47. Lakhtin YM, Kogan YD, Saposhnikov VN (1976) Metalloved Therm Obrab Met 6:2

    Google Scholar 

  48. Hudis M (1973) J Appl Phys 44(4):1489

    Article  Google Scholar 

  49. Bingzhang X, Yingzhi Z (1987) Surf Eng 3(3):226

    Article  Google Scholar 

  50. Rie KT (1989) In: Proceedings of international conference ion nitriding-carburising. Materials Park, ASM International, Cincinnati, OH, p 45

    Google Scholar 

  51. Alves C, Rodriques JA, Martinelli AE (1999) Surf Coat Technol 116–119:112

    Article  Google Scholar 

  52. Kim YM, Han JG (2003) Surf Coat Technol 171:205

    Google Scholar 

  53. Gruen R, Guenther H (1991) Mater Sci Eng A 140 (1991)

    Google Scholar 

  54. Hugon R, Fabry N, Herrion GJ (1996) Phys D: Appl Phys 29:761

    Article  Google Scholar 

  55. Kuppusami P, Sundararaman D, Raghunathan VS (1987) In: Proceedings of second International Congress on surface engineering, Stratford upon Avon, paper no. 31

    Google Scholar 

  56. Jack KH (1975) In: Proceedings of heat treatment. The Metals Society, London, Dec 1973, p 39

    Google Scholar 

  57. Lightfoot BJ, Jack DH (1973) Heat treatment, vol 73. Metals Society, London, pp 248–254

    Google Scholar 

  58. Grieveson P, Turkdogan ET (1964) Trans AIME 230:407

    Google Scholar 

  59. Wang L, Nam KS, Kwon SC (2003) Appl Surf Sci 207:372–377

    Article  Google Scholar 

  60. Heau C, Fillit RY, Vaux F, Pascaretti F (1999) Surf Coat Technol 120–121:200

    Article  Google Scholar 

  61. Tibbetts GG (1974) J Appl Phys 45:5072

    Article  Google Scholar 

  62. Gantois M, Ablitzer D, Marchand JL, Michel H (1998) In: Proceedings of International Conference Heat Treatments of Materials, Materials Park. ASM International, Cincinnati, OH, p 55–66

    Google Scholar 

  63. Rizk AS, McCulloch DJ (1979) Surf Technol 9:303

    Article  Google Scholar 

Download references

Acknowledgments

The author (P. Kuppusami) gratefully acknowledges the support and encouragement given by Dr. V.S. Raghunathan, former Associate Director, Mr. A. L.E. Terrance and Dr. Arup Dasgupta, IGCAR, Kalpakkam for the contribution and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh S. Hosmani .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Hosmani, S.S., Kuppusami, P., Goyal, R.K. (2014). Recent Advances in Surface Alloying of Austenitic Stainless Steel by Plasma Nitriding. In: An Introduction to Surface Alloying of Metals. SpringerBriefs in Applied Sciences and Technology(). Springer, New Delhi. https://doi.org/10.1007/978-81-322-1889-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1889-0_4

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1888-3

  • Online ISBN: 978-81-322-1889-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics