Skip to main content

Comparative Genomics of Cereal Crops: Status and Future Prospects

  • Chapter
  • First Online:
Book cover Agricultural Bioinformatics

Abstract

Cereals are members of grass family and play an important role in providing food security to billions of people across the globe since the beginning of agriculture. Cereal crops differ considerably from each other in terms of morphology, adaptation and genetic architecture. This has motivated researchers across the world to study their evolution, genetics and development. During the last few decades, phenomenal progress in genomics research has paved the way for comparative genomic studies across crop species, especially the cereals due to their economic importance. These studies together have revealed a good level of conservation across cereals both at macro and micro level. However, most of the comparative studies in cereals prior to genome sequencing projects have been performed at genetic map level. Large-scale genome sequencing projects during the beginning of the twenty-first century, especially in rice, sorghum, maize, barley, wheat and foxtail millet, led to better understanding of the conservations of genes/genomic regions at sequence level. This chapter reviews the status of cereal comparative genomics prior to genome sequencing and progress post-genome sequencing of major cereals. The genomic organization of major cereals has been discussed in detail. The chapter also describes the distinguishing features and the mechanism of evolution of cereal genomes. The advancement in genome sequencing technologies, especially the next-generation sequencing technologies and its effectiveness in performing genomic studies across crops, is also discussed. The various genomic tools, databases and resources for performing comparative genomic studies are reviewed here. The chapter presents the opportunities on how the knowledge gained from comparative genomics of cereals can be used for gene discovery programmes, functional genomics and subsequently genetic improvement of cereal crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhunov ED, Goodyear AW, Geng S et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baillie DL, Rose AM (2000) WABA success: a tool for sequence comparison between large genomes. Genome Res 10:1071–1073

    CAS  PubMed  Google Scholar 

  • Barry GF (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol 125:1164–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    CAS  Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12:1021–1029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennetzen JL (2007) Patterns in grass genome evolution. Plant Biol 10:176–181

    CAS  Google Scholar 

  • Berkmann PJ, Lai K, Lorenc MT et al (2012) Next-generation sequencing applications for wheat crop improvement. Am J Bot 99(2):365–371

    Google Scholar 

  • Bowers JE, Abbey C, Anderson S et al (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowers JE, Arias MA, Asher R et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci U S A 102:13206–13211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brenchley R, Spannag M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D et al (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A 99:9328–9333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunner S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low copy DNA interrupts the microcolinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunner S, Fengler K, Morgante M et al (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buell CR (2009) Poaceae genomes: going from unattainable to becoming a model clade for comparative plant genomics. Plant Physiol 149:111–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buell CR, Yuan Q, Ouyang S et al (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res 15:1284–1291

    CAS  PubMed  Google Scholar 

  • Campbell MA, Zhu W, Jiang N et al (2007) Identification and characterization of lineage-specific genes within the Poaceae. Plant Physiol 145:1311–1322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chain P, Kurtz S, Ohlebusch E et al (2003) An applications-focused review of comparative genomics tools: capabilities, limitations and future challenges. Brief Bioinform 4:105–123

    CAS  PubMed  Google Scholar 

  • Chen M, SanMiguel P, De Oliveira AC et al (1997) Microcollinearity in sh-2 homologous regions of the maize, rice and sorghum genomes. Proc Natl Acad Sci U S A 94:3431–3435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V et al (2003) SNARE-protein –mediated disease resistance at the plant cell wall. Nature 425:973–977

    CAS  PubMed  Google Scholar 

  • Conte MG, Gaillard S, Lanau N et al (2008) GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Res 36:991–998

    Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duvick J, Fu A, Muppirala U et al (2007) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:959–965

    Google Scholar 

  • Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci U S A 96:8265–8270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95:1971–1974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Google Scholar 

  • Gottwald S, Stein N, Borner A et al (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol Genet Genomics 271:426–436

    CAS  PubMed  Google Scholar 

  • Griffiths S, Sharp R, Foote TN et al (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    CAS  PubMed  Google Scholar 

  • Gupta PK (2008) Single molecule DNA sequencing technologies for future genomics research. Trends Biotechnol 26:602–611

    CAS  PubMed  Google Scholar 

  • Guyot R, Yahiaoui N, Feuillet C et al (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4:47–58

    CAS  PubMed  Google Scholar 

  • Harlan JR (1971) Agricultural origins: centers and non-centers. Science 174:568–574

    Google Scholar 

  • Harlan JR (1992) Origins and process of domestication. In: Chapman GP (ed) Grass evolution and domestication. Cambridge University Press, Cambridge, pp 159–175

    Google Scholar 

  • Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci U S A 100:12265–12270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang N, Bao ZR, Zhang XY et al (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    CAS  PubMed  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kilian A, Chen J, Han F et al (1997) Towards map-based cloning of the barley stem rust resistance gene Rpg1 and rpg4 using rice as a intergenomic cloning vehicle. Plant Mol Biol 35:187–195

    CAS  PubMed  Google Scholar 

  • Kim JS, Klein PE, Klein RR et al (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirik A, Salomon S, Puchta H (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J 19:5562–5566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein PE, Klein RR, Vrebalov J, Mullet JE (2003) Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and major chromosomal rearrangement. Plant J 34:605–621

    CAS  PubMed  Google Scholar 

  • Kresovich S, Barbazuk B, Bedell JA et al (2005) Toward sequencing the sorghum genome. A U.S. National Science Foundation-sponsored workshop report[w]. Plant Physiol 138:1898–1902

    CAS  Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G et al (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 8(6):e67742. doi:10.1371/journal.pone.0067742

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    PubMed  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci U S A 102:9068–9073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  • Leroy P, Guilhot N, Sakai H et al (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front Plant Sci 3:5. doi:10.3389/fpls.2012.00005

  • Ling HQ, Zhao S, Liu D et al (2013) Draft genome of the wheat A genome progenitor Triticum urartu. Nature 496:87–90

    CAS  PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    CAS  PubMed  Google Scholar 

  • Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol. doi:10.1155/2012/251364

    Google Scholar 

  • Lynch M, O’Hely M, Walsh B, Force A (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:661–673

    CAS  PubMed  Google Scholar 

  • Lyons E, Pedersen B, Kane J, Freeling M (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Trop Plant Biol 1:181–190

    CAS  Google Scholar 

  • Ma J, SanMiguel P, Lai J et al (2005) DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Genetics 170:1209–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.)). Theor Appl Genet 121:1339–1356

    CAS  PubMed  Google Scholar 

  • Mardis ER (2008) Next generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Wu J, Kanamori H et al (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Mayer KFX, Waugh R, Langridge P et al (2012) The International Barley Genome Sequencing Consortium. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • Merriman B, Ion Torrent R&D Team, Rothberg JM (2012) Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 33(23):3397–3417. doi:10.1002/elps.201200424

  • Monna L, Kitazawa N, Yoshino R et al (2002) Positional cloning of rice semidwarfing gene, sd-1: rice ‘green revolution gene’ encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    CAS  PubMed  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739

    CAS  PubMed  Google Scholar 

  • Morgenstern B, Frech K, Dress A et al (1998) DIALIGN: finding local similarities by multiple sequence alignment. Bioinformatics 14:290–294

    CAS  PubMed  Google Scholar 

  • Nelson JC, Wang S, Wu Y et al (2011) Single nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genomics 12:352–364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nix DA, Eisen MB (2005) GATA: a graphic alignment tool for comparative sequence analysis. BMC Bioinformatics 6:9

    PubMed Central  PubMed  Google Scholar 

  • Paterson AH, Lin YR, Li ZK et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009a) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Feltus FA et al (2009b) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson AH, Freeling M, Sasaki T (2010) Grains of knowledge: genomics of model cereals. Genome 15:1643–1650

    Google Scholar 

  • Peng JR, Richards DE, Hartley NM et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    CAS  PubMed  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    CAS  PubMed  Google Scholar 

  • Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci U S A 98:2101–2103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salse J, Feuillet C (2007) Comparative genomics of cereals. In: Varsheny RK, Tuberosa R (eds) Genomic assisted crop improvement, vol 1, Genomics approaches and platforms. Springer, The Netherlands, pp 177–205

    Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409

    CAS  PubMed  Google Scholar 

  • Sanger F, Air GM, Barrell BG et al (1977a) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695

    CAS  PubMed  Google Scholar 

  • Scherrer B, Isidore E, Klein P et al (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17:361–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Shinozuka H, Cogan NOI, Smith KF et al (2010) Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72:343–355

    CAS  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    PubMed Central  PubMed  Google Scholar 

  • Singh NK, Raghuvanshi S, Srivastava SK et al (2004) Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Funct Integr Genomics 4:102–117

    CAS  PubMed  Google Scholar 

  • Siqueira JF Jr, Fouad AF, Rocas IN (2012) Pyrosequencing as a tool for better understanding of human microbiomes. J Oral Microbiol. doi:10.3402/jom.v4i0.10743

    PubMed Central  PubMed  Google Scholar 

  • Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A 100:9055–9060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivas G, Satish K, Murali Mohan S et al (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117:283–296

    CAS  PubMed  Google Scholar 

  • Swigonova Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169:891–906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tarchini R, Biddle P, Wineland R et al (2000) The complete sequence of 340 kb of DNA around the rice Adh1- Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian CG, Xiong YQ, Liu TY et al (2005) Evidence for an ancient whole genome duplication event in rice and other cereals. Yi Chuan Xue Bao 32:519–527

    CAS  PubMed  Google Scholar 

  • Tikhonov AP, SanMiguel PJ, Nakajima Y et al (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci U S A 96:7409–7414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Sigmund R, Borner A et al (2005) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD et al (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    CAS  PubMed  Google Scholar 

  • Vicient CM, Jaaskelainen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are common feature of grass genomes. Plant Physiol 125:1283–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vincens P, Badel-Chagnon A, Andre C et al (2002) D-ASSIRC: distributed program for finding sequence similarities in genomes. Bioinformatics 18:446–451

    CAS  PubMed  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci U S A 103:17638–17643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    CAS  Google Scholar 

  • Vollbrecht E, Springer PS, Goh L et al (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126

    CAS  PubMed  Google Scholar 

  • Wang J, Roe B, Macmil S et al (2010) Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11:261

    PubMed Central  PubMed  Google Scholar 

  • Ware D, Jaiswal P, Ni J et al (2002) Gramene: a resource for comparative grass genomics. Nucleic Acids Res 30:103–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong GKS, Wang J, Tao L et al (2002) Compositional gradients in Gramineae genes. Genome Res 12:851–856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie T, Hood L (2003) ACGT-a comparative genomics tool. Bioinformatics 19:1039–1040

    CAS  PubMed  Google Scholar 

  • Yilmaz A, Nishiyama MY Jr, Fuentes BG et al (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149:171–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Yu J, Wang J, Lin W et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    PubMed Central  PubMed  Google Scholar 

  • Zhang LY, Guo XS, He B et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Google Scholar 

  • Zhang G, Liu X, Quan Z et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Rakshit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Rakshit, S., Ganapathy, K.N. (2014). Comparative Genomics of Cereal Crops: Status and Future Prospects. In: P.B., K., Bandopadhyay, R., Suravajhala, P. (eds) Agricultural Bioinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1880-7_4

Download citation

Publish with us

Policies and ethics