Skip to main content

Tackling the Heat-Stress Tolerance in Crop Plants: A Bioinformatics Approach

  • Chapter
  • First Online:
Agricultural Bioinformatics

Abstract

Plants are exposed to different types of environmental factors including heat stress that affect negatively various regular activities of the plant. Plants, as sessile organisms, must have developed efficient strategies of response to cope with and adapt to different types of abiotic stresses imposed by the adverse environment. Plant responses to environmental stress are complex and appear to be a difficult task to study in the classical plant-breeding program due to several technical limitations. The current knowledge of the regulatory network governing environmental stress responses is fragmentary, and an understanding of the damage caused by these environmental stresses or the plant’s tolerance mechanisms to deal with stress-induced damages is far from complete. The emergence of the novel “omics” technologies from the last few years, such as genomics, proteomics, and metabolomics, is now allowing researchers to enable active analyses of regulatory networks that control abiotic stress responses. Recent advances in different omics approaches have been found greatly useful in understanding plant responses to abiotic stress conditions. Such analyses increase our knowledge on plant responses and adaptation to stress conditions and allow improving crop improvement programs including plant breeding. In this chapter, recent progresses on systematic analyses of plant responses to heat stress including genomics, proteomics, metabolomics, and phenomics and transgenic-based approaches to overcome heat stress are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HSFs:

Heat-Shock Transcription Factors

ROS:

Reactive Oxygen Species

GEO:

Gene Expression Omnibus

TAIR:

The Arabidopsis Information Resource

NGS:

Next-Generation Sequencing

GC-MS:

Gas Chromatography Coupled to Mass Spectrometry

LC-MS:

Liquid Chromatography Coupled to Mass Spectrometry

SGN:

Sol Genomics Network

References

  • Abraham EM (2008) Differential responses of hybrid bluegrass and Kentucky bluegrass to drought and heat stress. Aristotle University of Thessaloniki, 54006, Thessaloniki, Greece, William A. Meyer, Stacy A. Bonos, and Bingru Huang; Hort Sci 43:2191–2195

    Google Scholar 

  • Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K (2008) PRIMe: a Web site that assembles tools for metabolomics and transcriptomics. In Silico Biol 8:339–345. doi:2008080027

    CAS  PubMed  Google Scholar 

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10. doi:Artn 399. doi:10.1186/1471-2164-10-399

  • Alcazar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrian M, Tiburcio AF, Altabella T (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552. doi:S0981-9428(10)00032-X [pii]10.1016/j.plaphy.2010.02.002

    CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550. doi:10.1007/s11120-008-9331-0

    CAS  PubMed  Google Scholar 

  • Almoguera C, Rojas A, Diaz-Martin J, Prieto-Dapena P, Carranco R, Jordano J (2002) A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem 277:43866–43872. doi:10.1074/jbc.M207330200 M207330200

  • Arbona V, Iglesias DJ, Talon M, Gomez-Cadenas A (2009) Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling. J Agric Food Chem 57:7338–7347. doi:10.1021/jf9009137

    CAS  PubMed  Google Scholar 

  • Arbona V, Manzi M, Ollas C, Gomez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911. doi:ijms14034885 [pii]10.3390/ijms14034885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arsova B, Schulze WX (2012) Current status of the plant phosphorylation site database PhosPhAt and its use as a resource for molecular plant physiology. Front Plant Sci 3:132. doi:10.3389/fpls.2012.00132

    PubMed Central  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543. doi:ers100 [pii]10.1093/jxb/ers100

    CAS  PubMed  Google Scholar 

  • Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powell WA, Wheeler N, Sederoff R, Carlson JE (2009) Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol 9. doi:Artn 51. doi:10.1186/1471-2229-9-51

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles-database and tools update. Nucleic Acids Res 35:D760–D765. doi:10.1093/nar/gkl887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143:312–325. doi:pp.106.090431 [pii]10.1104/pp.106.090431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to study drought responses. J Exp Bot 61:3519–3528. doi:erq201 [pii]10.1093/jxb/erq201

    CAS  PubMed  Google Scholar 

  • Bowen J, Lay-Yee M, Plummer K, Ferguson I (2002) The heat shock response is involved in thermotolerance in suspension-cultured apple fruit cells. J Plant Physiol 159:599–606

    CAS  Google Scholar 

  • Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41:1–14. doi:TPJ2272 [pii]10.1111/j.1365-313X.2004.02272.x

    CAS  PubMed  Google Scholar 

  • Cao Z, Jia Z, Liu Y, Wang M, Zhao J, Zheng J, Wang G (2010) Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity. Mol Biol Rep 37:1089–1097. doi:10.1007/s11033-009-9848-0

    CAS  PubMed  Google Scholar 

  • Carroll AJ, Badger MR, Harvey Millar A (2010) The Metabolome Express Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinformatics 11:376. doi:1471-2105-11-376 [pii]10.1186/1471-2105-11-376

    PubMed Central  PubMed  Google Scholar 

  • Castellana N, Bafna V (2010) Proteogenomics to discover the full coding content of genomes: a computational perspective. J Proteomics 73:2124–2135. doi:S1874-3919(10)00185-5 [pii]10.1016/j.jprot.2010.06.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305. doi:pp.105.074898 [pii]10.1104/pp.105.074898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143:251–262. doi:pp.106.091322 [pii]10.1104/pp.106.091322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Agarwal P, Khurana P (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 286:171–187. doi:10.1007/s00438-011-0638-8

    CAS  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931. doi:10.1111/j.1365-3040.2012.02525.x

    CAS  PubMed  Google Scholar 

  • Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 32:D575–D577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134. doi:10.1007/s10142-006-0039-y

    CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163. doi:1471-2229-11-163 [pii]10.1186/1471-2229-11-163

    PubMed Central  PubMed  Google Scholar 

  • Crone D, Rueda J, Martin KL, Hamilton DA, Mascarenhas JP (2001) The differential expression of a heat shock promoter in floral and reproductive tissues. Plant Cell Environ 24:869–874

    CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124. doi:S1369-5266(99)00052-7

    CAS  PubMed  Google Scholar 

  • Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40(Database issue):D1194–D1201. doi:gkr938 [pii]10.1093/nar/gkr938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM (2009) Shedding light on an extremophile lifestyle through transcriptomics. New Phytol 183:764–775. doi:10.1111/j.1469-8137.2009.02913.x

    CAS  PubMed  Google Scholar 

  • De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2:778–791. doi:nprot.2007.95 [pii]10.1038/nprot.2007.95

    PubMed  Google Scholar 

  • Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant Cell Environ 33:648–654. doi:PCE2092 [pii]10.1111/j.1365-3040.2009.02092.x

    CAS  PubMed  Google Scholar 

  • Dupont FM, Hurkman WJ, Vensel WH, Tanaka CK, Kothari KM, Chung OK, Altenbach SB (2006) Protein accumulation and composition in wheat grains: effects of mineral nutrients and high temperature. Eur J Agron 25:96–107

    CAS  Google Scholar 

  • Enfissi EM, Barneche F, Ahmed I, Lichtle C, Gerrish C, McQuinn RP, Giovannoni JJ, Lopez-Juez E, Bowler C, Bramley PM, Fraser PD (2010) Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. Plant Cell 22:1190–1215. doi:tpc.110.073866 [pii]10.1105/tpc.110.073866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eveland AL, McCarty DR, Koch KE (2008) Transcript profiling by 3′-untranslated region sequencing resolves expression of gene families. Plant Physiol 146:32–44. doi:pp.107.108597 [pii]10.1104/pp.107.108597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferry-Dumazet H, Gil L, Deborde C, Moing A, Bernillon S, Rolin D, Nikolski M, de Daruvar A, Jacob D (2011) MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles. BMC Plant Biol 11:104. doi:1471-2229-11-104 [pii]10.1186/1471-2229-11-104

    PubMed Central  PubMed  Google Scholar 

  • Ficklin SP, Luo F, Feltus FA (2010) The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks. Plant Physiol 154:13–24. doi:pp.110.159459 [pii]10.1104/pp.110.159459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finka A, Mattoo RU, Goloubinoff P (2011) Meta-analysis of heat and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 16:15–31. doi:10.1007/s12192-010-0216-8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkel E (2009) Imaging. With ‘phenomics’, plant scientists hope to shift breeding into overdrive. Science 325:380–381. doi:325/5939/380 [pii]10.1126/science.325_380

    CAS  PubMed  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908. doi:erp234 [pii]10.1093/jxb/erp234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedel S, Usadel B, von Wiren N, Sreenivasulu N (2012) Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk. Front Plant Sci 3:294. doi:10.3389/fpls.2012.00294

    PubMed Central  PubMed  Google Scholar 

  • Furbank RT (2009) Plant phenomics: from gene to form and function. Funct Plant Biol 36:V–VI

    Google Scholar 

  • Gao H, Brandizzi F, Benning C, Larkin RM (2008) A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:16398–16403. doi:0808463105 [pii]10.1073/pnas.0808463105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477. doi:10.1038/Nmeth.1613

    CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661–1678. doi:pp.111.178616 [pii]10.1104/pp.111.178616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gowik U, Brautigam A, Weber KL, Weber AP, Westhoff P (2011) Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell 23:2087–2105. doi:tpc.111.086264 [pii]10.1105/tpc.111.086264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol 164:126–136. doi:S0176-1617(06)00048-4 [pii]10.1016/j.jplph.2006.01.004

    CAS  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra R, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    CAS  PubMed  Google Scholar 

  • Hagel J, Facchini PJ (2008) Plant metabolomics: analytical platforms and integration with functional genomics. Phytochem Rev 7:479–497

    CAS  Google Scholar 

  • Hall AE (1992) Breeding for heat tolerance. Plant Breeding Rev 10:129–168

    Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press LLC, Boca Raton

    Google Scholar 

  • Haralampidis K, Milioni D, Rigas S, Hatzopoulos P (2002) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. Plant Physiol 129:1138–1149. doi:10.1104/pp. 004044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harada K, Fukusaki E (2009) Profiling of primary metabolite by means of capillary electrophoresis-mass spectrometry and its application for plant science. Plant Biotechnol 26:47–52. doi:10.5511/plantbiotechnology.26.47

    CAS  Google Scholar 

  • Helmy M, Tomita M, Ishihama Y (2011) OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC Plant Biol 11:63. doi:1471-2229-11-63 [pii]10.1186/1471-2229-11-63

  • Hernandez G, Ramirez M, Valdes-Lopez O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767. doi:pp.107.096958 [pii]10.1104/pp.107.096958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hewezi T, Howe P, Maier TR, Hussey RS, Mitchum MG, Davis EL, Baum TJ (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20:3080–3093. doi:tpc.108.063065 [pii]10.1105/tpc.108.063065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci U S A 97:4392–4397. doi:97/8/4392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huhman DV, Sumner LW (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59:347–360

    CAS  PubMed  Google Scholar 

  • Hussain SS, Mudasser M (2007) Prospects for wheat production under changing climate in mountain areas of Pakistan- an econometric analysis. Agric Syst 94:494–501

    Google Scholar 

  • Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K, Suzuki T, Suzuki H, Okazaki K, Kitayama M, Kanaya S, Aoki K, Shibata D (2008) Metabolite annotations based on the integration of mass spectral information. Plant J 54:949–962. doi:TPJ3434 [pii]10.1111/j.1365-313X.2008.03434.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059. doi:PCE1987 [pii]10.1111/j.1365-3040.2009.01987.x

    CAS  PubMed  Google Scholar 

  • Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M, Cheng LL (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 52:520–525. doi:10.1007/DCR.0b013e31819c9a2c00003453-200903000-00024

    PubMed Central  PubMed  Google Scholar 

  • Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K, Gruissem W, Baginsky S, Schmidt R, Schulze WX, Sun Q, van Wijk KJ, Egelhofer V, Wienkoop S, Weckwerth W, Bruley C, Rolland N, Toyoda T, Nakagami H, Jones AM, Briggs SP, Castleden I, Tanz SK, Millar AH, Heazlewood JL (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155:259–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joung JG, Corbett AM, Fellman SM, Tieman DM, Klee HJ, Giovannoni JJ, Fei Z (2009) Plant MetGenMAP: an integrative analysis system for plant systems biology. Plant Physiol 151:1758–1768. doi:pp.109.145169 [pii]10.1104/pp.109.145169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168. doi:pp.104.052142 [pii]10.1104/pp.104.052142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kapushesky M, Adamusiak T, Burdett T, Culhane A, Farne A, Filippov A, Holloway E, Klebanov A, Kryvych N, Kurbatova N et al (2012) Gene expression atlas update-a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res 40:D1077–D1081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    CAS  PubMed  Google Scholar 

  • Keles Y, Oncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790

    CAS  Google Scholar 

  • Khurana N, Chauhan H, Khurana P (2013) Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis Plants. PLoS One 8:e54418. doi:10.1371/journal.pone.0054418PONE-D-12-26816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotak S, Vierling E, Baumlein H, von Koskull-Doring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195. doi:tpc.106.048165 [pii]10.1105/tpc.106.048165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203. doi:M806337200 [pii]10.1074/jbc.M806337200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265. doi:eri010 [pii]10.1093/jxb/eri010

    CAS  PubMed  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761. doi:pp.107.112060 [pii]10.1104/pp.107.112060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Lay P, Isaure MP, Sarry JE, Kuhn L, Fayard B, Le Bail JL, Bastien O, Garin J, Roby C, Bourguignon J (2006) Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply. Biochimie 88:1533–1547. doi:S0300-9084(06)00050-2 [pii]10.1016/j.biochi.2006.03.013

    PubMed  Google Scholar 

  • Lee JH, Hübel A, Schöffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock protein and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612. doi:10.1046/j.1365-313X.1995.8040603.x

    CAS  PubMed  Google Scholar 

  • Lee JH, Schoffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252:11–19

    CAS  PubMed  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:10270–10275. doi:0702061104 [pii]10.1073/pnas.0702061104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee TH, Kim YK, Pham TT, Song SI, Kim JK, Kang KY, An G, Jung KH, Galbraith DW, Kim M, Yoon UH, Nahm BH (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 151:16–33. doi:pp.109.139030 [pii]10.1104/pp.109.139030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KW, Cha JY, Kim KH, Kim YG, Lee BH, Lee SH (2012) Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnol Lett 34:167–174. doi:10.1007/s10529-011-0750-1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry second edition. Worth, New York

    Google Scholar 

  • Li C, Chen Q, Gao X, Qi B, Chen N, Xu S, Chen J, Wang X (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China C Life Sci 48:540–550

    CAS  PubMed  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067. doi:ng.703 [pii]10.1038/ng.703

    CAS  PubMed  Google Scholar 

  • Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63:86–99. doi:TPJ4222 [pii]10.1111/j.1365-313X.2010.04222.x

    CAS  PubMed  Google Scholar 

  • Lim CJ, Yang KA, Hong JK, Choi JS, Yun DJ, Hong JC, Chung WS, Lee SY, Cho MJ, Lim CO (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119:373–383. doi:10.1007/s10265-006-0285-z

    CAS  PubMed  Google Scholar 

  • Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345. doi:tpc.112.102855 [pii]10.1105/tpc.112.102855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu JG, Qin QL, Zhang Z, Peng RH, Xiong AS, Chen JM, Yao QH (2009) OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep 42:16–21

    PubMed  Google Scholar 

  • Long TA, Brady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol 24:81–103. doi:10.1146/annurev.cellbio.24.110707.175408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Huang X, Han B (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20:1238–1249. doi:gr.106120.110 [pii]10.1101/gr.106120.110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luengwilai K, Saltveit M, Beckles DM (2012) Metabolite content of harvested Micro-Tom tomato (Solanum lycopersicum L.) fruit is altered by chilling and protective heat-shock treatments as shown by GC–MS metabolic profiling. Postharvest Biol Technol 63:116–122

    CAS  Google Scholar 

  • Lugan R, Niogret MF, Leport L, Guegan JP, Larher FR, Savoure A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229. doi:10.1111/j.1365-313X.2010.04323.x

    CAS  PubMed  Google Scholar 

  • Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8:R49. doi:gb-2007-8-4-r49 [pii]10.1186/gb-2007-8-4-r49

    PubMed Central  PubMed  Google Scholar 

  • Majoul T, Bancel E, Triboi E, Ben Hamida J, Branlard G (2003) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from total endosperm. Proteomics 3:175–183. doi:10.1002/pmic.200390026

    CAS  PubMed  Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, hsp17.7, results in increased or decreased thermotolerancedouble dagger. Plant J 20:89–99. doi:tpj581

    CAS  PubMed  Google Scholar 

  • Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E (2011) Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mol Plant 4:97–115. doi:ssq058 [pii]10.1093/mp/ssq058

    CAS  PubMed  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuura H, Takenami S, Kubo Y, Ueda K, Ueda A, Yamaguchi M, Hirata K, Demura T, Kanaya S, Kato K (2013) A Computational and experimental approach reveals that the 5′-proximal region of the 5′-UTR has a cis-regulatory signature responsible for heat stress-regulated mRNA translation in Arabidopsis. Plant Cell Physiol 54:474–483

    CAS  PubMed  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HSfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567. doi:10.1101/gad.228802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47:785–795. doi:S0981-9428(09)00122-3 [pii]10.1016/j.plaphy.2009.05.003

    CAS  PubMed  Google Scholar 

  • Mittal D, Madhyastha DA, Grover A (2012) Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One 7:e40899. doi:10.1371/journal.pone.0040899PONE-D-12-02988 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CH (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218. doi:141/4/1205 [pii]10.1104/pp.106.078428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278:31033–31042. doi:10.1074/jbc.M303587200M303587200

    CAS  PubMed  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolas C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665. doi:10.1016/j.jplph.2009.11.012

    CAS  PubMed  Google Scholar 

  • Moriwaki M, Yamakawa T, Washino T, Kodama T, Igarashi Y (1999) Delayed recovery of β-glucuronidase activity driven by an Arabidopsis heat shock promoter in heat-stressed transgenic Nicotiana plumbaginifolia. Plant Cell Rep 19:96–100

    CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264. doi:10.1016/j.ygeno.2008.07.001

    CAS  PubMed  Google Scholar 

  • Movahedi S, Van de Peer Y, Vandepoele K (2011) Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. Plant Physiol 156:1316–1330. doi:pp.111.177865 [pii]10.1104/pp.111.177865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breeding 13:165–175

    CAS  Google Scholar 

  • Nagel KA, Kastenholz B, Jahnke S, van Dusschoten D, Aach T (2009) Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct Plant Biol 36:947–959. doi:10.1071/FP09184

    CAS  Google Scholar 

  • Nakagami H, Sugiyama N, Ishihama Y, Shirasu K (2012) Shotguns in the front line: phosphoproteomics in plants. Plant Cell Physiol 53:118–124. doi:10.1093/pcp/pcr148

    CAS  PubMed  Google Scholar 

  • Nanjo Y, Skultety L, Ashraf Y, Komatsu S (2010) Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. J Proteome Res 9:3989–4002. doi:10.1021/pr100179f

    CAS  PubMed  Google Scholar 

  • Neilson KA, Gammulla CG, Mirzaei M, Imin N, Haynes PA (2010) Proteomic analysis of temperature stress in plants. Proteomics 10:828–845. doi:10.1002/pmic.200900538

    CAS  PubMed  Google Scholar 

  • Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB, Ribaut JM, Yang R (2002) Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14:1621–1633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nikiforova VJ, Daub CO, Hesse H, Willmitzer L, Hoefgen R (2005) Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. J Exp Bot 56:1887–1896. doi:eri179 [pii]10.1093/jxb/eri179

    CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547. doi:TPJ2889 [pii]10.1111/j.1365-313X.2006.02889.x

    CAS  PubMed  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9. doi:Artn 312. doi:10.1186/1471-2164-9-312

  • Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    CAS  PubMed  Google Scholar 

  • Oikawa A, Nakamura Y, Ogura T, Kimura A, Suzuki H, Sakurai N, Shinbo Y, Shibata D, Kanaya S, Ohta D (2006) Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiol 142:398–413. doi:pp.106.080317 [pii]10.1104/pp.106.080317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A (2007) Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genomics 278:31–42. doi:10.1007/s00438-007-0229-x

    CAS  PubMed  Google Scholar 

  • Palmblad M, Mills DJ, Bindschedler LV (2008) Heat-shock response in Arabidopsis thaliana explored by multiplexed quantitative proteomics using differential metabolic labeling. J Proteome Res 7:780–785. doi:10.1021/pr0705340

    CAS  PubMed  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park SM, Hong CB (2002) Class I small heat shock protein gives thermotolerance in tobacco. J. Plant Physiol 159:25–30

    CAS  Google Scholar 

  • Pike CS, Grieve J, Badger MR, Price GD (2001) Thermoprotective properties of small heat shock proteins from rice, tomato and Synechocystis sp PCC6803 overexpressed in, and isolated from, Escherichia coli. Aust J Plant Physiol 28:1219–1229

    CAS  Google Scholar 

  • Polenta GA, Calvete JJ, Gonzalez CB (2007) Isolation and characterization of the main small heat shock proteins induced in tomato pericarp by thermal treatment. FEBS J 274:6447–6455. doi:EJB6162 [pii]10.1111/j.1742-4658.2007.06162.x

    CAS  PubMed  Google Scholar 

  • Prändl R, Hinderhofer K, Eggers-Schumacher G, Schöffl F (1998) HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet 258:269–278. doi:10.1007/s004380050731

    PubMed  Google Scholar 

  • Proveniers MC, van Zanten M (2013) High temperature acclimation through PIF4 signaling. Trends Plant Sci 18:59–64. doi:S1360-1385(12)00209-9 [pii]10.1016/j.tplants.2012.09.002

    CAS  PubMed  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239. doi:10.1016/j.febslet.2010.11.051

    CAS  PubMed  Google Scholar 

  • Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 9:432. doi:1471-2164-9-432 [pii]10.1186/1471-2164-9-432

    PubMed Central  PubMed  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman H ur, Malik SA, Saleem M, Hussain F (2007) Evaluation of seed physical traits in relation to heat tolerance in upland cotton. Pakistan J Bot 39:475–483

    Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy RA, Kumar B, Reddy PS, Mishra RN, Mahanty S, Kaul T, Nair S, Sopory SK, Reddy MK (2009) Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: interlinking oxidative and heat-stress responses. J Plant Physiol 166:1646–1659. doi:S0176-1617(09)00134-5 [pii]10.1016/j.jplph.2009.04.007

    CAS  PubMed  Google Scholar 

  • Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, Reddy MK (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Genet Genomics 283:243–254. doi:10.1007/s00438-010-0518-7

    CAS  PubMed  Google Scholar 

  • Reddy PS, Thirulogachandar V, Vaishnavi CS, Aakruti A, Sopory SK, Reddy MK (2011) Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene 474:29–38. doi:S0378-1119(10)00459-2 [pii]10.1016/j.gene.2010.12.004

    CAS  PubMed  Google Scholar 

  • Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32:1807–1818. doi:10.1002/elps.201000663

    CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. doi:10.1104/pp. 103.033431pp.103.033431

  • Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F (2007) Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ 30:135–146

    PubMed  Google Scholar 

  • Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P (2007) Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant Cell Environ 30:753–763. doi:PCE1664 [pii]10.1111/j.1365-3040.2007.01664.x

    CAS  PubMed  Google Scholar 

  • Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with coexpression networks and metabolomics – ‘majority report by precogs’. Trends Plant Sci 13:36–43

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827. doi:0605639103 [pii]10.1073/pnas.0605639103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakurai N, Ara T, Ogata Y, Sano R, Ohno T, Sugiyama K (2011) KaPPA-View4: a metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data. Nucleic Acids Res 39:D677–D684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakurai T, Yamada Y, Sawada Y, Matsuda F, Akiyama K, Shinozaki K, Hirai MY, Saito K (2013) PRIMe Update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation. Plant Cell Physiol 54:e5. doi:pcs184 [pii]10.1093/pcp/pcs184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268. doi:S0014579303014947

    CAS  PubMed  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393. doi:1471-2164-10-393 [pii]10.1186/1471-2164-10-393

    PubMed Central  PubMed  Google Scholar 

  • Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY (2009) Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol 50:37–47. doi:pcn183 [pii]10.1093/pcp/pcn183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaeffer ML, Harper LC, Gardiner JM, Andorf CM, Campbell DA, Cannon EK, Sen TZ, Lawrence CJ (2011) MaizeGDB: curation and outreach go hand-in-hand. Database (Oxford). bar022.doi:bar022 [pii]10.1093/database/bar022

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119. doi:S1874-9399(11)00178-7 [pii]10.1016/j.bbagrm.2011.10.002

    CAS  PubMed  Google Scholar 

  • Schmidt R, Schippers JH, Welker A, Mieulet D, Guiderdoni E, Mueller-Roeber B (2012) Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica. AoB Plants 2012:pls011. doi: 10.1093/aobpla/pls011

    Google Scholar 

  • Schneider M, Consortium TU, Poux S (2012) UniProtKB amid the turmoil of plant proteomics research. Front Plant Sci 3:270

    PubMed Central  PubMed  Google Scholar 

  • Schöffl F, Prändl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117:1135–1141

    PubMed Central  PubMed  Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772. doi:10.1007/s11103-005-5750-x

    CAS  PubMed  Google Scholar 

  • Schreiber F, Colmsee C, Czauderna T, Grafahrend-Belau E, Hartmann A, Junker A, Junker BH, Klapperstuck M, Scholz U, Weise S (2012) MetaCrop 2.0: managing and exploring information about crop plant metabolism. Nucleic Acids Res 40(Database issue):D1173–D1177. doi:gkr1004 [pii]10.1093/nar/gkr1004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seepaul R, Macoon B, Reddy KR, Baldwin B (2011) Switchgrass (Panicum virgatum L.) intraspecific variation and thermotolerance classification using in vitro seed germination assay. Am J Plant Sci 2:134–147

    Google Scholar 

  • Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160. doi:10.1186/1471-2229-10-160

    PubMed Central  PubMed  Google Scholar 

  • Sharma RC, Crossa J, Velu G, Huerta-Espino J, Vargas M, Payne TS, Singh RP (2012) Genetic gains for grain yield in CIMMYT spring bread wheat across international environments. Crop Sci 52:1522–1533

    Google Scholar 

  • Shinmyo A, Shoji T, Bando E, Nagaya S, Nakai Y, Kato K, Sekine M, Yoshida K (1998) Metabolic engineering of cultured tobacco cells. Biotechnol Bioeng 58:329–332. doi:10.1002/(SICI)1097-0290(19980420)58:2/3<329::AID-BIT34>3.0.CO;2-4

    CAS  PubMed  Google Scholar 

  • Skylas DJ, Cordwell SJ, Hains PG, Larsen MR, Basseal DJ, Walsh BJ, Blumenthal C, Rathmell W, Copeland L, Wrigley CW (2002) Heat shock of wheat during grain filling: proteins associated with heat-tolerance. J Cereal Sci 35:175–188. doi:UNSP jcrs.2001.0410. doi:10.1006/jcrs.2001.0410

    CAS  Google Scholar 

  • Smita S, Katiyar A, Pandey DM, Chinnusamy V, Archak S, Bansal KC (2013) Identification of conserved drought stress responsive gene-network across tissues and developmental stages in rice. Bioinformation 9:72–78. doi:10.6026/9732063000907297320630009072

    PubMed Central  PubMed  Google Scholar 

  • Snider JL, Oosterhuis DM (2011) How does timing, duration and severity of heat stress influence pollen-pistil interactions in angiosperms? Plant Signal Behav 6:930–933

    PubMed Central  PubMed  Google Scholar 

  • Song NH, Ahn YJ (2011) DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. Nat Biotechnol 28:698–704. doi:S1871-6784(11)00089-6 [pii]10.1016/j.nbt.2011.04.002

    CAS  Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758. doi:pp.107.111781 [pii]10.1104/pp.107.111781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sreenivasulu N, Sunkar R, Wobus U, Strickert M (2010) Array platforms and bioinformatics tools for the analysis of plant transcriptome in response to abiotic stress. Methods Mol Biol 639:71–93. doi:10.1007/978-1-60761-702-0_5

    CAS  PubMed  Google Scholar 

  • Sule A, Vanrobaeys F, Hajos G, Van Beeumen J, Devreese B (2004) Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry 65:1853–1863. doi:10.1016/j.phytochem.2004.03.030S0031942204001414

    CAS  PubMed  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37(Database issue):D969–D974. doi:gkn654 [pii]10.1093/nar/gkn654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X (2012) ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484. doi:10.1007/s00299-012-1262-8

    CAS  PubMed  Google Scholar 

  • Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132:979–987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2011) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    PubMed  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi T, Naito S, Komeda Y (1992) The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis plants: a powerful tool for the isolation of regulatory mutants of the heat-shock response. Plant J 2:751–761. doi:10.1111/j.1365-313X.1992.tb00144

    CAS  Google Scholar 

  • Takahashi H, Takahara K, Hashida SN, Hirabayashi T, Fujimori T, Kawai-Yamada M, Yamaya T, Yanagisawa S, Uchimiya H (2009) Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene. Plant Physiol 151:100–113. doi:pp.109.140665 [pii]10.1104/pp.109.140665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uchida A, Hibino T, Shimada T, Saigusa M, Takabe T, Araki E, Kajita H, Takabe T (2008) Overexpression of DnaK chaperone from a halotolerant cyanobacterium Aphanothece halophytica increases seed yield in rice and tobacco. Plant Biotechnol 25:141–150

    CAS  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078. doi:TPJ3748 [pii]10.1111/j.1365-313X.2008.03748.x

    CAS  PubMed  Google Scholar 

  • Valcu CM, Lalanne C, Plomion C, Schlink K (2008) Heat induced changes in protein expression profiles of Norway spruce (Picea abies) ecotypes from different elevations. Proteomics 8(20):4287–4302. doi:10.1002/pmic.200700992

    CAS  PubMed  Google Scholar 

  • van Baarlen P, van Esse HP, Siezen RJ, Thomma BP (2008) Challenges in plant cellular pathway reconstruction based on gene expression profiling. Trends Plant Sci 13:44–50. doi:S1360-1385(07)00304-4 [pii]10.1016/j.tplants.2007.11.003

    PubMed  Google Scholar 

  • von Koskull-Doring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457. doi:S1360-1385(07)00193-8 [pii]10.1016/j.tplants.2007.08.014

    Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. doi:10.1016/j.tplants.2004.03.006S1360-1385(04)00060-3

    CAS  PubMed  Google Scholar 

  • Wang W, Wang YJ, Zhang Q, Qi Y, Guo DJ (2009a) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10. doi:Artn 465. doi:10.1186/1471-2164-10-465

  • Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009b) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37(Web Server issue):w623–w633. doi:gkp456 [pii]10.1093/nar/gkp456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO (2012) PaxDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteomics 11:492–500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11:338. doi:10.1186/1471-2164-11-338

    PubMed Central  PubMed  Google Scholar 

  • Weston DJ, Gunter LE, Rogers A, Wullschleger SD (2008) Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Syst Biol 2:16. doi:1752-0509-2-16 [pii]10.1186/1752-0509-2-16

    PubMed Central  PubMed  Google Scholar 

  • Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD (2011) Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ 34:1488–1506. doi:10.1111/j.1365-3040.2011.02347.x

    CAS  PubMed  Google Scholar 

  • Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W (2008) Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Mol Cell Proteomics 7:1725–1736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wienkoop S, Staudinger C, Hoehenwarter W, Weckwerth W, Egelhofer V (2012) ProMEX – a mass spectral reference database for plant proteomics. Front Plant Sci 3:125. doi:10.3389/fpls.2012.00125

    PubMed Central  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV (2007) An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS One 2(8):e718

    PubMed Central  PubMed  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497. doi:nature11014 [pii]10.1038/nature11014

    CAS  PubMed  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    CAS  PubMed  Google Scholar 

  • Xu J, Tian J, Belanger F, Huang B (2007) Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species. J Exp Bot 58:3789–3796

    CAS  PubMed  Google Scholar 

  • Xu J, Belanger F, Huang B (2008) Differential gene expression in shoots and roots under heat stress for a geothermal and non-thermal Agrostis grass species contrasting in heat tolerance. Environ Exp Bot 63:240–247

    CAS  Google Scholar 

  • Yabe N, Takahashi T, Komeda Y (1994) Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol 35:1207–1219

    CAS  PubMed  Google Scholar 

  • Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol 51:795–809. doi:pcq034 [pii]10.1093/pcp/pcq034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JY, Sun Y, Sun AQ, Yi SY, Qin J, Li MH, Liu J (2006) The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Mol Biol 62:385–395. doi:10.1007/s11103-006-9027-9

    CAS  PubMed  Google Scholar 

  • Yazdanbakhsh N, Fisahn J (2009) High throughput phenotyping of root growth dynamics, lateral root formation, root architecture and root hair development enabled by PlaRoM. Funct Plant Biol 36:938–946. doi:10.1071/FP09167

    Google Scholar 

  • Yeh CH, Kaplinsky NJ, Hu C, Charng YY (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195:10–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin YL, Yu GJ, Chen YJ, Jiang S, Wang M, Jin YX, Lan XQ, Liang Y, Sun H (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordycepsmilitaris. PLoS One 7 (12).doi:ARTN e51853. doi:10.1371/journal.pone.0051853

  • Youens-Clark K, Buckler E, Casstevens T, Chen C, Declerck G, Derwent P, Dharmawardhana P, Jaiswal P, Kersey P, Karthikeyan AS, Lu J, McCouch SR, Ren L, Spooner W, Stein JC, Thomason J, Wei S, Ware D (2011) Gramene database in 2010: updates and extensions. Nucleic Acids Res 39(Database issue):D1085–D1094. doi:gkq1148 [pii]10.1093/nar/gkq1148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227:957–967

    CAS  PubMed  Google Scholar 

  • Zhang M, Li G, Huang W, Bi T, Chen G, Tang Z, Su W, Sun W (2010) Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10:3117–3129. doi:10.1002/pmic.200900637

    CAS  PubMed  Google Scholar 

  • Zhang H, Guo F, Zhou H, Zhu G (2012) Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum Oocysts associated with environmental survival and stresses. BMC Genomics 13:647. doi:10.1186/1471-2164-13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812. doi:10.1146/annurev.biochem.72.121801.161511

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi:10.1104/pp. 104.046367136/1/2621

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

PSR is thankful to the Department of Science and Technology, Govt. of India, New Delhi, for research funding through the INSPIRE Faculty Fellowship Award Grant No. IFA-11LSPA-06. PBK is thankful to the University Grants Commission, New Delhi, for providing UGC-BSR faculty fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kavi Kishor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Palakolanu, S.R., Vadez, V., Nese, S., Kavi Kishor, P.B. (2014). Tackling the Heat-Stress Tolerance in Crop Plants: A Bioinformatics Approach. In: P.B., K., Bandopadhyay, R., Suravajhala, P. (eds) Agricultural Bioinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1880-7_3

Download citation

Publish with us

Policies and ethics